Skip to main content
Log in

Branching Rules, Kostka–Foulkes Polynomials and q-multiplicities in Tensor Product for the Root Systems B n , C n and D n

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

The Kostka–Foulkes polynomials \(K_{\lambda ,\mu }^{\phi }(q)\) related to a root system \(\phi \) can be defined as alternating sums running over the Weyl group associated to \(\phi \). By restricting these sums over the elements of the symmetric group when \(\phi \) is of type \(B_{n},C_{n}\) or \(D_{n}\), we obtain again a class \(\widetilde{K}_{\lambda ,\mu }^{\phi }(q)\) of Kostka–Foulkes polynomials. When \(\phi \) is of type \(C_{n}\) or \(D_{n}\) there exists a duality between these polynomials and some natural \(q\)-multiplicities \(u_{\lambda ,\mu }(q)\) and \(U_{\lambda ,\mu }(q)\) in tensor products [11]. In this paper we first establish identities for the \(\widetilde{K}_{\lambda ,\mu }^{\phi }(q)\) which implies in particular that they can be decomposed as sums of Kostka–Foulkes polynomials \(K_{\lambda ,\mu }^{A_{n-1}}(q)\) with nonnegative integer coefficients. Moreover these coefficients are branching coefficients\(.\) This allows us to clarify the connection between the \(q\)-multiplicities \(u_{\lambda ,\mu }(q),U_{\lambda ,\mu }(q)\) and the polynomials \(K_{\lambda ,\mu }^{\diamondsuit }(q)\) defined by Shimozono and Zabrocki. Finally we show that \(u_{\lambda ,\mu }(q)\) and \(U_{\lambda ,\mu }(q)\) coincide up to a power of \(q\) with the one dimension sum introduced by Hatayama and co-workers when all the parts of \(\mu \) are equal to \(1\), which partially proves some conjectures of Lecouvey and Shimozono and Zabrocki.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, T.H.: An insertion scheme for \(C_{n}\) crystals. In: Kashiwara, M., Miwa, T. (eds.) Physical Combinatorics, vol. 191, pp. 1–48. Birkhäuser, Boston (2000)

    Google Scholar 

  2. Goodman, G., Wallach, N.R.: Representation Theory and Invariants of the Classical Groups. Cambridge University Press

  3. Hatayama, G., Kuniba, A., Okado, M., Takagi, T.: Combinatorial \(R\) matrices for a family of crystals: \(C_{n}^{(1)}\) and \(A\,_{2 \, n-1}^{(2)}\) cases. In: Kashiwara, M., Miwa, T. (eds.) Physical Combinatorics, pp. 105–139. Birkhauser (2000)

  4. Hatayama, H., Kuniba, A., Okado, M., Takagi, T.: Combinatorial \(R\) matrices for a family of crystals: \(B\,_{n}^{(1)},D_{n}^{(1)},A\,_{2 \, n}^{(2)}\) and \(D_{n+1}^{(2)}\) cases. J. Algebra 247, 577–615 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kang, S.-J., Kashiwara, M., Misra, K.-C.: Crystal bases of Verma modules for quantum affine Lie algebras. Compositio Math. 92, 299–325 (1994)

    MATH  MathSciNet  Google Scholar 

  6. Kashiwara, M.: On crystal bases of the \(q\)-analogue of universal enveloping algebras. Duke Math. J. 63, 465–516 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kashiwara, M., Nakashima, T.: Crystal graphs for representations of the \(q\)-analogue of classical Lie algebras. J. Algebra 165, 295–345 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Koike, K., Terada, I.: Young diagrammatic methods for the representations theory of the classical groups of type \(B\,_{n},C_{n}\) and \(D\,_{n}\). J. Algebra 107, 466–511 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lascoux, A., Schützenberger, M.-P.: Le mono\(\mathit{\ddot{\imath}}\)de plaxique. In: A. de Luca (ed.) Non Commutative Structures in Algebra and Geometric Combinatorics. Quaderni della Ricerca Scientifica del C.N.R., Roma (1981)

  10. Lascoux, A., Schützenberger, M.-P.: Sur une conjecture de H.O Foulkes. C. R. Acad. Sci., Paris 288, 95–98 (1979)

    MATH  Google Scholar 

  11. Lecouvey, C.: A duality between \(q\)-multiplicities in tensor products and \(q\)-multiplicities of weights for the root systems \(B,C\) or \(D\) (submitted). To appear in J. Comb., Ser. A

  12. Lecouvey, C.: Schensted-type correspondence, Plactic Monoid and Jeu de Taquin for type \(C_{n}\). J. Algebra 247, 295–331 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lecouvey, C.: Combinatorics of crystal graphs and Kostka–Foulkes polynomials for the root systems \(B\,_{n},C_{n}\) and \(D\,_{n}\). To appear in Eur. J. Comb

  14. Littlewood, D.-E.: The Theory of Group Characters and Matrix Representations of Groups, Second Edition. Oxford University Press (1958)

  15. Lusztig, G.: Singularities, character formulas, and a \(q\)-analog of weight multiplicities, Analyse et topologie sur les espaces singuliers (II–III). Asterisque 101–102, 208–227 (1983)

    MathSciNet  Google Scholar 

  16. Macdonald, I.-G.: Symmetric Functions and Hall Polynomials, Second edition, Oxford Mathematical Monograph, Oxford University Press, New York (1995)

    Google Scholar 

  17. Nakayashiki, A., Yamada, Y.: Kostka-Foulkes polynomials and energy function in sovable lattice models. Sel. Math., New Ser. 3(4), 547–599 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nelsen, K., Ram, A.: Kostka-Foulkes polynomials and Macdonald spherical functions. In: Wensley, C. (ed.) Surveys in Combinatorics 2003, London Math. Soc. Lecture Notes Ser. 307, pp. 325–370. Cambridge University Press (2003)

  19. Okado, M., Schilling, A., Shimozono, M.: A crystal to rigged configuration bijection for nonexecptional affine algebras. In: Jing, N. (ed.) Algebraic Combinatorics and Quantum Groups, pp. 85–124. World Scientific (2003)

  20. Okado, M., Schilling, A., Shimozono, M.: Virtual crystals and fermionic formulas of type \(D_{n+1}^{(2)},A\,_{2 \, n}^{(2)}\) and \(C_{n}^{(1)}\). Represent. Theory 7, 101–163 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schilling, A., Shimozono, M.: \(X=M\) for symmetric powers. J. Algebra 295, 562–610 (2006). http://dx.doi.org/10.1016/j.jalgebra.2005.04.023

    Google Scholar 

  22. Schilling, A., Warnaar, S.O.: Inhomogeneous lattice paths, generalized Kostka–Foulkes polynomials and \(A\,_{n-1}\) supernomials. Commun. Math. Phys. 202, 359–401 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Shimozono, M., Zabrocki, M.: Deformed universal characters for classical and affine algebras. To appear in J. Algebra

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Lecouvey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lecouvey, C. Branching Rules, Kostka–Foulkes Polynomials and q-multiplicities in Tensor Product for the Root Systems B n , C n and D n . Algebr Represent Theor 9, 377–402 (2006). https://doi.org/10.1007/s10468-006-9020-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-006-9020-7

Mathematics Subject Classifications (2000)

Key words

Navigation