Skip to main content
Log in

Integral Theory for Hopf Algebroids

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

An Erratum to this article was published on 04 December 2009

Abstract

The theory of integrals is used to analyze the structure of Hopf algebroids. We prove that the total algebra of a Hopf algebroid is a separable extension of the base algebra if and only if it is a semi-simple extension and if and only if the Hopf algebroid possesses a normalized integral. It is a Frobenius extension if and only if the Hopf algebroid possesses a nondegenerate integral. We give also a sufficient and necessary condition in terms of integrals, under which it is a quasi-Frobenius extension, and illustrate by an example that this condition does not hold true in general. Our results are generalizations of classical results on Hopf algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Böhm, G.: An alternative notion of Hopf algebroid, In: S. Caenepeel and F. Van Oystaeyen (eds), Hopf Algebras in Non-Commutative Geometry and Physics, Marcel Dekker, New York, 2004, pp. 31–54.

    Google Scholar 

  2. Böhm, G.: Internal bialgebroids, entwining structures and corings, In: Contemp. Math. 376, Amer. Math. Soc., Providence, 2005, pp. 207–226.

  3. Böhm, G., Nill, F. and Szlachányi, K.: Weak Hopf algebras I: Integral theory and C *-structure, J. Algebra 221 (1999), 385–438.

    MathSciNet  MATH  Google Scholar 

  4. Böhm, G. and Szlachányi, K.: A coassociative C *-quantum group with non-integral dimensions, Lett. Math. Phys. 35 (1996), 437–456.

    Google Scholar 

  5. Böhm, G. and Szlachányi, K.: Hopf algebroids with bijective antipodes: Axioms, integrals and duals, J. Algebra 274 (2004), 585–617.

    Google Scholar 

  6. Böhm, G. and Szlachányi, K.: Hopf algebroid symmetry of Frobenius extensions of depth 2, Comm. Algebra 32 (2004), 4433–4464.

    MathSciNet  MATH  Google Scholar 

  7. Brzeziński, T.: The structure of corings, Algebra Represent. Theory 5 (2002), 389–410.

    MATH  Google Scholar 

  8. Brzeziński, T., Caenepeel, S. and Militaru, G.: Doi-Koppinen modules for quantum-groupoids, J. Pure Appl. Algebra 175 (2002), 46–62.

    Google Scholar 

  9. Brzeziński, T. and Militaru, G.: Bialgebroids, ×R-bialgebras and duality, J. Algebra 251 (2002), 279–294.

    MathSciNet  MATH  Google Scholar 

  10. Brzeziński, T. and Wisbauer, R.: Corings and Comodules, London Math. Soc. Lecture Note Ser. 309, Cambridge Univ. Press, 2003.

  11. Bulacu, D. and Caenepeel, S.: Integrals for (dual) quasi-Hopf algebras. Applications, J. Algebra 266 (2003), 552–583.

    Article  MathSciNet  MATH  Google Scholar 

  12. Caenepeel, S. and Militaru, G.: Maschke functors, semisimple functors and separable functors of the second kind, J. Pure Appl. Algebra 178 (2003), 131–157.

    Article  MathSciNet  MATH  Google Scholar 

  13. Caenepeel, S., Militaru, G. and Zhu, S.: Frobenius and separable functors for generalized module categories and non-linear equations, In: Lecture Notes in Math. 1787, Springer, New York, 2002.

  14. Drinfeld, V. G.: Quasi-Hopf algebras, Leningrad J. Math. 1 (1990), 1419–1457.

    MATH  MathSciNet  Google Scholar 

  15. Hattori, A.: Semisimple algebras over a commutative ring, J. Math. Soc. Japan 15 (1963), 404–419.

    MATH  MathSciNet  Google Scholar 

  16. Hausser, F. and Nill, F.: Integral theory for quasi-Hopf algebras, arXiv:math.QA/9904164.

  17. Hirata, K. and Sugano, K.: On semisimple extensions and separable extensions over non-commutative rings, J. Math. Soc. Japan 18 (1966), 360–373.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kadison, L. and Szlachányi, K.: Bialgebroid actions on depth two extensions and duality, Adv. Math. 179 (2003), 75–121.

    Article  MathSciNet  MATH  Google Scholar 

  19. Larson, R. G. and Sweedler, M. E.: An associative orthogonal bilinear form for Hopf algebras, Amer. J. Math. 91 (1969), 75–93.

    MathSciNet  MATH  Google Scholar 

  20. Lomp, C.: Integrals in Hopf algebras over rings, arXiv:math.RA/0307046, Comm. Algebra 32 (2004), 4687–4711.

    Article  MATH  MathSciNet  Google Scholar 

  21. Lu, J.-H.: Hopf algebroids and quantum groupoids, Internat. J. Math. 7 (1996), 47–70.

    Article  MATH  MathSciNet  Google Scholar 

  22. Maschke, H.: Über den arithmetischen Character der Coefficienten der Substitutionen endlicher linearen Substitutiongruppen, Math. Ann. 50 (1898), 482–498.

    Google Scholar 

  23. Müller, B.: Quasi-Frobenius Erweiterungen, Math. Zeit. 85 (1964), 345–368.

    MATH  Google Scholar 

  24. Năstăsescu, C., Van den Bergh, M. and Van Oystaeyen, F.: Separable functors applied to graded rings, J. Algebra 123 (1989), 397–413.

    MathSciNet  MATH  Google Scholar 

  25. Panaite, F.: A Maschke type theorem for quasi-Hopf algebras, In: S. Caenepeel and A. Verschoren (eds), Rings, Hopf Algebras and Brauer Groups, Marcel Dekker, New York, 1998.

    Google Scholar 

  26. Panaite, F. and Van Oystaeyen, F.: Existence of integrals for finite-dimensional quasi-Hopf algebras, Bull. Belg. Math. Soc. Simon Steven 7(2) (2000), 261–264.

    MATH  Google Scholar 

  27. Pareigis, B.: When Hopf algebras are Frobenius algebras, J. Algebra 18 (1971), 588–596.

    Article  MATH  MathSciNet  Google Scholar 

  28. Pierce, R. S.: Associative Algebras, Springer, New York, 1982.

    MATH  Google Scholar 

  29. Rosenberg, Chase, as referred to in [23].

  30. Schauenburg, P.: Duals and doubles of quantum groupoids (×R-Hopf Algebras), In: Contemp. Math. 267, Amer. Math. Soc., Providence, 2000, pp. 273–299.

  31. Schauenburg, P.: Weak Hopf algebras and quantum groupoids, Banach Center Publications 61 (2003), 171–181.

    MATH  MathSciNet  Google Scholar 

  32. Sweedler, M. E.: Hopf Algebras, Benjamin, New York, 1969.

    Google Scholar 

  33. Sweedler, M. E.: Integrals for Hopf algebras, Ann. Math. 89 (1969), 323–335.

    MATH  MathSciNet  Google Scholar 

  34. Szlachányi, K.: Finite quantum groupoids and inclusions of finite type, Fields Institute Commun. 30 (2001), 393–407.

    MATH  Google Scholar 

  35. Szlachányi, K.: Galois actions by finite quantum groupoids, In: L. Vainerman (ed.), Locally Compact Quantum Groups and Groupoids, IRMA Lect. Math. Theoret. Phys. 2, de Guyter, Berlin, 2003.

    Google Scholar 

  36. Szlachányi, K.: The monoidal Eilenberg–Moore construction and bialgebroids, J. Pure Appl. Algebra 182 (2003), 287–315.

    MATH  MathSciNet  Google Scholar 

  37. Szlachányi, K.: The double algebraic viewpoint of finite quantum groupoids, J. Algebra 280 (2004), 249–294.

    MATH  MathSciNet  Google Scholar 

  38. Takeuchi, M.: Groups of algebras over A⊗Ā, J. Math. Soc. Japan 29 (1977), 459–492.

    MATH  MathSciNet  Google Scholar 

  39. Takeuchi, M.: \(\sqrt{\mathrm{Morita}}\) theory – Formal ring laws and monoidal equivalences of categories of bimodules, J. Math. Soc. Japan 39 (1987), 301–336.

    MATH  MathSciNet  Google Scholar 

  40. Vecsernyés, P.: Larson–Sweedler theorem and the role of grouplike elements in weak Hopf algebras, J. Algebra 270 (2003), 471–520.

    MATH  MathSciNet  Google Scholar 

  41. Xu, P.: Quantum groupoids, Comm. Math. Phys. 216 (2001), 539–581.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Böhm.

Additional information

Mathematics Subject Classification (2000)

16W30.

An erratum to this article is available at http://dx.doi.org/10.1007/s10468-009-9167-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhm, G. Integral Theory for Hopf Algebroids. Algebr Represent Theor 8, 563–599 (2005). https://doi.org/10.1007/s10468-005-8760-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-005-8760-0

Keywords

Navigation