Skip to main content
Log in

Composite change point estimation for bent line quantile regression

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

The bent line quantile regression describes the situation where the conditional quantile function of the response is piecewise linear but still continuous in covariates. In some applications, the change points at which the quantile functions are bent tend to be the same across quantile levels or for quantile levels lying in a certain region. To capture such commonality, we propose a composite estimation procedure to estimate model parameters and the common change point by combining information across quantiles. We establish the asymptotic properties of the proposed estimator, and demonstrate the efficiency gain of the composite change point estimator over that obtained at a single quantile level through numerical studies. In addition, three different inference procedures are proposed and compared for hypothesis testing and the construction of confidence intervals. The finite sample performance of the proposed procedures is assessed through a simulation study and the analysis of a real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bondell, H., Reich, B., Wang, J. (2010). Noncrossing quantile regression curve estimation. Biometrika, 97(4), 825–838.

  • Bunker, C., Ukoli, F., Matthews, K., Kriska, A., Huston, S., Kuller, L. (1995). Weight threshold and blood pressure in a lean black population. Hypertension, 26(4), 616–623.

  • Chan, K., Tsay, R. (1998). Limiting properties of the least squares estimator of a continuous threshold autoregressive model. Biometrika, 85(2), 413–426.

  • Chappell, R. (1989). Fitting bent lines to data, with application to allometry. Journal of Theoretical Biology, 138(2), 235–256.

    Article  MathSciNet  Google Scholar 

  • Chen, L., Wei, Y. (2005). Computational issues for quantile regression. Sankhy \(\bar{a}\), 67(2):399–417.

  • Chernozhukov, V., Fern\(\acute{a}\)ndez-Val, I., Galichon, A. (2010). Quantile and probability curves without crossing. Econometrica, 78(3), 1093–1125.

  • Dette, H., Volgushev, S. (2008). Non-crossing non-parametric estimates of quantile curves. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(3), 609–627.

  • Feder, P. (1975). On asymptotic distribution theory in segmented regression problems identified case. The Annals of Statistics, 3(1), 49–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Fiteni, I. (2004). \(\tau \)-estimators of regression models with structural change of unknown location. Journal of Econometrics, 119(1), 19–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Freedman, D. (1981). Bootstrapping regression models. The Annals of Statistics, 9(6), 1218–1228.

    Article  MathSciNet  MATH  Google Scholar 

  • Galvao, A. F., Kato, K., Montes-Rojas, G., Olmo, J. (2014). Testing linearity against threshold effects: uniform inference in quantile regression. Annals of the Institute of Statistical Mathematics, 66(2), 413–439.

  • Gutenbrunner, C., Jur\(\check{e}\), J., Koenker, R., Portnoy, S. (1993). Tests of linear hypotheses based on regression rank scores. Journal of Nonparametric Statistics, 2(4), 307–331.

  • Hall, P., Sheather, S. (1988). On the distribution of a studentized quantile. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 50(3), 381–391.

  • He, X. (1997). Quantile curves without crossing. The American Statistician, 51(2), 186–192.

    Google Scholar 

  • He, X., Shao, Q. (1996). A general Bahadur representation of M-estimators and its application to linear regression with nonstochastic designs. The Annals of Statistics, 24(6), 2608–2630.

  • He, X., Shao, Q. (2000). On parameters of increasing dimensions. Journal of Multivariate Analysis, 73(1), 120–135.

  • Hendricks, W., Koenker, R. (1992). Hierarchical spline models for conditional quantiles and the demand for electricity. Journal of the American Statistical Association, 87(417), 58–68.

  • Jiang, L., Wang, H., Bondell, H. (2013). Interquantile shrinkage in regression models. Journal of Computational and Graphical Statistics, 22(4), 970–986.

  • Jiang, X., Jiang, J., Song, X. (2012). Oracle model selection for nonlinear models based on weighted composite quantile regression. Statistica Sinica, 22(4), 1479–1506.

  • Kai, B., Li, R., Zou, H. (2010). Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(1), 49–69.

  • Kai, B., Li, R., Zou, H. (2011). New efficient estimation and variable selection methods for semiparametric varying-coefficient partially linear models. The Annals of Statistics, 39(1), 305–332.

  • Kaufman, J., Asuzu, M., Mufunda, J., Forrester, T., Wilks, R., Luke, A., et al. (1997). Relationship between blood pressure and body mass index in lean populations. Hypertension, 30(6), 1511–1516.

    Article  Google Scholar 

  • Kerry, S., Micah, F., Plange-Rhule, J., Eastwood, J., Cappuccio, F. (2005). Blood pressure and body mass index in lean rural and semi-urban subjects in West Africa. Journal of Hypertension, 23(9), 1645–1651.

  • Kocherginsky, M., He, X., Mu, Y. (2005). Practical confidence intervals for regression quantiles. Journal of Computational and Graphical Statistics, 14(1), 41–55.

  • Koenker, R. (1984). A note on l-estimates for linear models. Statistics & Probability Letters, 2(6):323–325.

  • Koenker, R. (1994). Confidence intervals for regression quantiles. Proceedings of the 5th Prague symposium on asymptotic statistics (pp. 349–359). New York: Springer.

    Google Scholar 

  • Koenker, R. (2005). Quantile regression. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Koenker, R., Bassett, G. (1978). Regression quantiles. Econometrica, 46(1), 33–50.

  • Kosorok, M., Song, R. (2007). Inference under right censoring for transformation models with a change-point based on a covariate threshold. The Annals of Statistics, 35(3), 957–989.

  • Lee, S., Seo, M., Shin, Y. (2011). Testing for threshold effects in regression models. Journal of the American Statistical Association, 106(493), 220–231.

  • Li, C., Wei, Y., Chappell, R., He, X. (2011). Bent line quantile regression with application to an allometric study of land mammals’ speed and mass. Biometrics, 67(1), 242–249.

  • Liu, J., Wu, S., Zidek, J. (1997). On segmented multivariate regression. Statistica Sinica, 7(2), 97–525.

  • Liu, Z., Qian, L. (2010). Changepoint estimation in a segmented linear regression via empirical likelihood. Communications in Statistics—Simulation and Computation, 39(1), 85–100.

  • Muggeo, V. (2003). Estimating regression models with unknown break-points. Statistics in Medicine, 22(19), 3055–3071.

    Article  Google Scholar 

  • Oka, T., Qu, Z. (2011). Estimating structural changes in regression quantiles. Journal of Econometrics, 162(2), 248–267.

  • Pastor, R., Guallar, E. (1998). Use of two-segmented logistic regression to estimate change-points in epidemiologic studies. American Journal of Epidemiology, 148(7), 631–642.

  • Qu, Z. (2008). Testing for structural change in regression quantiles. Journal of Econometrics, 146(1), 170–184.

    Article  MathSciNet  MATH  Google Scholar 

  • Robinson, D. (1964). Estimates for the points of intersection of two polynomial regressions. Journal of the American Statistical Association, 59(305), 214–224.

    Article  MathSciNet  Google Scholar 

  • Su, L., Xiao, Z. (2008). Testing for parameter stability in quantile regression models. Statistics & Probability Letters, 78(16):2768–2775.

  • Vieth, E. (1989). Fitting piecewise linear regression functions to biological responses. Journal of the American Statistical Association, 67(1), 390–396.

    Google Scholar 

  • Wang, J., He, X. (2007). Detecting differential expressions in genechip microarray studies: A quantile approach. Journal of the American Statistical Association, 102(477), 104–112.

  • Wang, J., Zhu, Z., Zhou, J. (2009). Quantile regression in partially linear varying coefficient models. The Annals of Statistics, 37(6B), 3841–3866.

  • Zhang, L., Wang, J., Zhu, Z. (2014). Testing for change points due to a covariate threshold in quantile regression. Statistica Sinica, 24(4), 1859–1877.

  • Zou, H., Yuan, M. (2008). Composite quantile regression and the oracle model selection theory. The Annals of Statistics, 36(3), 1108–1126.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyi Zhu.

Additional information

Zhang’s research is partially supported by NNSFC Grant 11171074. Wang’s research is partially supported by NSF (National Science Foundation) CAREER Award DMS-1149355. Zhu’s research is partially supported by NSFC 11271080.

Appendix

Appendix

Lemma 1

Suppose Assumptions A1–A3 hold, then \(\hat{\varvec{\theta }}\) is a consistent estimator of \(\varvec{\theta }_{0}\).

Proof

At a fixed point u, we need to minimize the following objective function

$$\begin{aligned} n^{-1}\sum _{k=1}^{K}\sum _{i=1}^{n}\rho _{\tau _{k}}\{Y_{i} - Q_{Y}(\tau _{k}; \varvec{\theta }|\mathbf {W}_{i})\}, \end{aligned}$$

which is equivalent to minimize

$$\begin{aligned} n^{-1}\sum _{i=1}^{n}\rho _{\tau _{k}}\{Y_{i} - Q_{Y}(\tau _{k}; \varvec{\eta }, u|\mathbf {W}_{i})\}, \end{aligned}$$

for any \(1\le k\le K\). The rest of the proof follows the similar arguments as that of Lemma 1 in Li et al. (2011) and thus is omitted. \(\square \)

Lemma 2

Suppose Assumptions A1–A3 hold, we have

$$\begin{aligned}&\sup _{\Vert \varvec{\theta }- \varvec{\theta }_{0}\Vert \le C_{2}n^{-1/2}} \Bigg \Vert n^{-1/2}\sum _{k=1}^{K}\sum _{i=1}^{n}[\psi _{\tau _{k}}\{Y_{i} - Q_{Y}(\tau _{k};\varvec{\theta }|\mathbf {W}_{i})\}h_{k}(\mathbf {W}_{i};\varvec{\theta }) -\psi _{\tau _{k}}\{Y_{i} \nonumber \\&\quad - Q_Y(\tau _{k}; \varvec{\theta }_{0}|\mathbf {W}_{i})\} h_{k}(\mathbf {W}_{i};\varvec{\theta }_{0})]-n^{-1/2}E\Bigg [\sum _{k=1}^{K}\sum _{i=1}^{n}\psi _{\tau _{k}}\{Y_{i}-Q_{Y}(\tau _{k};\varvec{\theta }|\mathbf {W}_{i})\} \nonumber \\&\quad \quad \times h_{k}(\mathbf {W}_{i};\varvec{\theta })\Bigg ] \Bigg \Vert =o_{p}(1), \end{aligned}$$
(8)

where \(C_{2}\) is some positive constant.

Proof

Let

$$\begin{aligned} u_{i}(\mathbf {V}_{i};\varvec{\theta },\varvec{\theta }_{0})&= \sum _{k=1}^{K}\psi _{\tau _{k}}\{Y_{i}-Q_{Y}(\tau _{k};\varvec{\theta }|\mathbf {W}_{i}) \}h_{k}(\mathbf {W}_{i};\varvec{\theta })\\&\quad \ - \sum _{k=1}^{K}\psi _{\tau _{k}}\{Y_{i}-Q_{Y}(\tau _{k};\varvec{\theta }_{0}|\mathbf {W}_{i})\} h_{k}(\mathbf {W}_{i};\varvec{\theta }_{0}), \end{aligned}$$

where \(\mathbf {V}_{i}\) includes all the random variables \(Y_{i}\) and \(\mathbf {W}_{i}\). Therefore, it can be rewritten as the following

$$\begin{aligned}&u_{i}(\mathbf {V}_{i};\varvec{\theta },\varvec{\theta }_{0})= u_{i1}(\mathbf {V}_{i};\varvec{\theta },\varvec{\theta }_{0})+u_{i2}(\mathbf {V}_{i};\varvec{\theta },\varvec{\theta }_{0})+u_{i3}(\mathbf {V}_{i};\varvec{\theta },\varvec{\theta }_{0})+u_{i4}(\mathbf {V}_{i};\varvec{\theta },\varvec{\theta }_{0}), \end{aligned}$$

where \(u_{i1}(\mathbf {V}_{i};\varvec{\theta },\varvec{\theta }_{0})=u_{i}(\mathbf {V}_{i};\) \(\varvec{\theta },\varvec{\theta }_{0})I\{X_{i}\le \min (u, u_{0})\}\), \(u_{i2}(\mathbf {V}_{i};\varvec{\theta },\varvec{\theta }_{0})=u_{i}(\mathbf {V}_{i};\varvec{\theta },\varvec{\theta }_{0})I(u_{0}\) \(< X_{i} \le u)\), \(u_{i3}(\mathbf {V}_{i};\varvec{\theta },\varvec{\theta }_{0})=u_{i}(\mathbf {V}_{i};\varvec{\theta },\varvec{\theta }_{0})I(u < X_{i} \le u_{_{0}})\) and \(u_{i4}(\mathbf {V}_{i};\varvec{\theta },\varvec{\theta }_{0})=u_{i}(\mathbf {V}_{i};\varvec{\theta },\varvec{\theta }_{0})\) \(I\{X_{i}> \max (u, u_{0})\}\).

To obtain (8), it is sufficient to show

$$\begin{aligned}&\sup _{\Vert \varvec{\theta }- \varvec{\theta }_{0}\Vert \le C_{2}n^{-1/2}} \left\| n^{-1/2}\sum _{i=1}^{n}\{B_{i} - E(B_{i})\} \right\| =o_{p}(1), \end{aligned}$$

where \(B_{i}\) represents \(u_{ij}(\mathbf {V}_{i};\varvec{\theta },\varvec{\theta }_{0})\) for \(j=1,2,3,4\). These results follow from Lemma 4.6 in He and Shao (1996), we only show the proof for \(B_{i}=u_{i1}(\mathbf {V}_{i};\varvec{\theta },\varvec{\theta }_{0})\) for instance. To verify this, we need to check the conditions (B1), (B3) and (B5\(^{'}\)) of He and Shao (1996).

For (B1), the measurability is easy to show.

For (B3), take \(r=1\), for any \(\Vert \varvec{\theta }- \varvec{\theta }_{0} \Vert \le C_{2}n^{-1/2}\), we have

$$\begin{aligned}&\Vert u_{i1}(\mathbf {V}_{i};\varvec{\theta },\varvec{\theta }_{0})\Vert \nonumber \\&\quad = \Bigg \Vert \Bigg [\sum _{k=1}^{K}\psi _{\tau _{k}}\{Y_{i}-Q_Y(\tau _{k};\varvec{\theta }|\mathbf {W}_{i}) \}h_{k}(\mathbf {W}_{i};\varvec{\theta }) \nonumber \\&\qquad - \sum _{k=1}^{K}\psi _{\tau _{k}}\{Y_{i}-Q_Y(\tau _{k};\varvec{\theta }_{0}|\mathbf {W}_{i}) \}h_{k}(\mathbf {W}_{i};\varvec{\theta }_{0}) \Bigg ] \ I\{X_{i}\le \min (u, u_{0})\} \Bigg \Vert \nonumber \\&\quad \le \Bigg \Vert \sum _{k=1}^{K}\psi _{\tau _{k}}\{Y_{i}-Q_Y(\tau _{k};\varvec{\theta }|\mathbf {W}_{i}) \}\{h_{k}(\mathbf {W}_{i};\varvec{\theta })-h_{k}(\mathbf {W}_{i};\varvec{\theta }_{0}) \}I\{X_{i}\le \min (u, u_{0})\} \Bigg \Vert \nonumber \\&\qquad + \Bigg \Vert \sum _{k=1}^{K}[\psi _{\tau _{k}}\{Y_{i}-Q_Y(\tau _{k};\varvec{\theta }|\mathbf {W}_{i}) \}-\psi _{\tau _{k}}\{Y_{i}-Q_Y(\tau _{k};\varvec{\theta }_{0}|\mathbf {W}_{i}) \} ]h_{k}(\mathbf {W}_{i};\varvec{\theta }_{0}) \nonumber \\&\quad \quad \times I\{X_{i}\le \min (u, u_{0})\} \Bigg \Vert \nonumber \\&\quad = \Vert I_{1i}\Vert +\Vert I_{2i}\Vert . \end{aligned}$$
(9)

For \(I_{1i}\), it is easy to obtain

$$\begin{aligned}&E(\Vert I_{1i}\Vert ^{2}|\mathbf {W}_{i})= n^{-1} O_{p}(1). \end{aligned}$$
(10)

For \(I_{2i}\), we have

$$\begin{aligned} \Vert I_{2i}\Vert= & {} \Bigg \Vert \sum _{i=1}^{K}[I\{Y_{i} \le Q_Y(\tau _{k};\varvec{\theta }_{0}|\mathbf {W}_{i})\} - I\{Y_{i}\le Q_Y(\tau _{k};\varvec{\theta }|\mathbf {W}_{i}) \}] h_{k}(\mathbf {W}_{i};\varvec{\theta }_{0}) \\&I\{X_{i}\le \min (u, u_{0})\} \Bigg \Vert \\\le & {} L_{1}\Vert \mathbf {U}_{i}\Vert \sum _{k=1}^{K}I\{ Q_{1}(\tau _{k};\varvec{\theta },\varvec{\theta }_{0})\le Y_{i}\le Q_{2}(\tau _{k};\varvec{\theta },\varvec{\theta }_{0}) \}I\{X_{i}\le \min (u, u_{0})\}, \end{aligned}$$

where \(L_{1}\) is some constant, \(\mathbf {U}_{i}=(1, X_{i}, \mathbf {Z}^{T}_{i})^{T}\), \(Q_{1}(\tau _{k};\varvec{\theta },\varvec{\theta }_{0})= \min \{Q_Y(\tau _{k};\varvec{\theta }_{0}|\mathbf {W}_{i}),\) \(Q_Y(\tau _{k};\varvec{\theta }|\mathbf {W}_{i}) \}\) and \(Q_{2}(\tau _{k};\varvec{\theta },\varvec{\theta }_{0})= \max \{ Q_Y(\tau _{k};\varvec{\theta }_{0}|\mathbf {W}_{i}),\) \(Q_Y(\tau _{k};\varvec{\theta }|\mathbf {W}_{i}) \}\). Thus

$$\begin{aligned}&E(\Vert I_{2i}\Vert ^{2}|\mathbf {W}_{i})\\&\quad \le L^{2}_{1}\Vert \mathbf {U}_{i}\Vert ^{2}I \{X_{i}\le \min (u, u_{0})\}E\bigg [\sum _{k=1}^{K}\sum _{k'=1}^{K}I\{ Q_{1}(\tau _{k};\varvec{\theta },\varvec{\theta }_{0})\le Y_{i}\le Q_{2}(\tau _{k};\varvec{\theta },\varvec{\theta }_{0})\}\\&\quad \quad \times I\{ Q_{1}(\tau _{k'};\varvec{\theta },\varvec{\theta }_{0})\le Y_{i}\le Q_{2}(\tau _{k'};\varvec{\theta },\varvec{\theta }_{0}) \} |\mathbf {W}_i\bigg ]. \end{aligned}$$

Without loss of generality, we assume \(Q_{1}(\tau _{k};\varvec{\theta },\varvec{\theta }_{0})< Q_{2}(\tau _{k'};\varvec{\theta },\varvec{\theta }_{0})\) and \(Q_{1}(\tau _{k'};\varvec{\theta },\varvec{\theta }_{0})< Q_{2}(\tau _{k};\varvec{\theta },\varvec{\theta }_{0})\). Denote \(Q_{1}(\tau _{k},\tau _{k'})= \min \{Q_{1}(\tau _{k};\varvec{\theta },\varvec{\theta }_{0}), Q_{1}(\tau _{k'};\varvec{\theta },\varvec{\theta }_{0}) \}\) and \(Q_{2}(\tau _{k},\tau _{k'})= \max \{Q_{2}(\tau _{k};\varvec{\theta },\varvec{\theta }_{0}), Q_{2}(\tau _{k'};\varvec{\theta },\varvec{\theta }_{0}) \}\). Hence

(11)

where the first inequality follows from the mean value theorem with \(\xi _{k,k'}\) between \(Q_{1}(\tau _{k};\tau _{k'}) \) and \(Q_{2}(\tau _{k};\tau _{k'})\), the second inequality follows from

$$\begin{aligned}&| \{ Q_{2}(\tau _{k};\tau _{k'}) - Q_{1}(\tau _{k};\tau _{k'})\} I \{X_{i}\le \min (u, u_{0})\} |\\&\quad \le |\{Q_Y(\tau _{k};\varvec{\theta }|\mathbf {W}_{i}) - Q_Y(\tau _{k};\varvec{\theta }_{0}|\mathbf {W}_{i})\} I \{X_{i}\le \min (u, u_{0})\}|\\&\quad \quad + |\{Q_Y(\tau _{k'};\varvec{\theta }|\mathbf {W}_{i}) - Q_Y(\tau _{k'};\varvec{\theta }_{0}|\mathbf {W}_{i})\} I \{X_{i}\le \min (u, u_{0})\}|\\&\quad \le |(\alpha _{\tau _{k}} - \alpha _{\tau _{k},0}) + (\varvec{\beta }_{1,\tau _{k}} - \varvec{\beta }_{1,\tau _{k},0})X_{i} - (\varvec{\beta }_{1,\tau _{k}}u - \varvec{\beta }_{1,\tau _{k},0}u_{0}) + \mathbf {Z}^{T}_{i}(\varvec{\gamma }_{\tau _{k}} - \varvec{\gamma }_{\tau _{k},0})|\\&\quad \quad + |(\alpha _{\tau _{k'}} - \alpha _{\tau _{k'},0}) + (\varvec{\beta }_{1,\tau _{k'}} - \varvec{\beta }_{1,\tau _{k'},0})X_{i} - (\varvec{\beta }_{1,\tau _{k'}}u - \varvec{\beta }_{1,\tau _{k'},0}u_{0}) + \mathbf {Z}^{T}_{i}(\varvec{\gamma }_{\tau _{k'}}\\&\quad \quad \quad - \varvec{\gamma }_{\tau _{k'},0})|\\&\quad \le L_{3} n^{-1/2}\Vert \mathbf {U}_{i}\Vert , \end{aligned}$$

where \(L_{2}\) and \(L_{3}\) are some positive constants satisfying \(L_{2}= L^{2}_{1}L^{2}_{3}\). By Assumptions A3 and A4, combining (9), (10) and (11), for large n we have

$$\begin{aligned}&E\{\Vert u_{i1}(\mathbf {V}_{i};\varvec{\theta },\varvec{\theta }_{0})\Vert ^{2} |\mathbf {W}_{i})\}\le L n^{-1/2}\Vert \mathbf {U}_{i}\Vert ^{3} \sum _{k=1}^{K}\sum _{k'=1}^{K} f_{i}(\xi _{k,k'}). \end{aligned}$$

It is obvious to obtain (B3) by taking \(a_{i}= \sqrt{L\Vert \mathbf {U}_{i}\Vert ^{3} \sum _{k=1}^{K}\sum _{k'=1}^{K}f_{i}(\xi _{k,k'})}\).

For (B5\(^{'}\)), let \(A_{n}=L\sum _{i=1}^{n}\Vert \mathbf {U}_{i}\Vert ^{3}\sum _{k=1}^{K}\sum _{k'=1}^{K}f_{i}(\xi _{k,k'})\). From Assumptions A2 and A3, we have \(E(A_{n})= O(n)\). For any positive constant \(C_{3}>0\), taking the decreasing sequence of positive number \(d_{n}\) satisfying \(n^{-1/2}(\log n)^4=o(d_{n})\) and \(d_{n}=o(1)\), we can show

$$\begin{aligned}&P \Bigg (\Vert \max _{1\le i \le n}u_{i1}(\mathbf {V}_{i};\varvec{\theta },\varvec{\theta }_{0})\Vert \ge C_{3}A^{1/2}_{n}d^{1/2}_{n} (\log n)^{-2} \Bigg )\\&\quad \le \sum _{i=1}^{n}P(\Vert u_{i1}(\mathbf {V}_{i};\varvec{\theta },\varvec{\theta }_{0})\Vert \ge C_{3}A^{1/2}_{n}d^{1/2}_{n} (\log n)^{-2} )\\&\quad \le \sum _{i=1}^{n} \frac{E\Vert u_{i1}(\mathbf {V}_{i};\varvec{\theta },\varvec{\theta }_{0})\Vert ^{2} }{C_{3}^{2}A_{n}d_{n} (\log n)^{-4}}\\&\quad \le \frac{ n^{-1/2}(\log n)^4 }{ C_{3}^{2}d_{n} }\\&\quad = o(1). \end{aligned}$$

Hence,

$$\begin{aligned}&\max _{1\le i \le n}\Vert u_{i1}(\mathbf {V}_{i};\varvec{\theta },\varvec{\theta }_{0})\Vert =O_{p}(A^{1/2}_{n}d^{1/2}_{n} (\log n)^{-2}), \end{aligned}$$

thus (B5’) is satisfied. This completes the proof of Lemma 2. \(\square \)

Proof of Theorem 1

By Lemmas 1 and 2, we obtain

$$\begin{aligned}&n^{-1/2}\sum _{k=1}^{K}\sum _{i=1}^{n}[\psi _{\tau _{k}}\{Y_{i} - Q_Y(\tau _{k};\hat{\varvec{\theta }}|\mathbf {W}_{i})\}\varvec{h}_{k}(\mathbf {W}_{i};\hat{\varvec{\theta }})-\psi _{\tau _{k}}\{Y_{i} - Q_Y(\tau _{k};\varvec{\theta }_{0}|\mathbf {W}_{i})\} \nonumber \\&\quad \times h_{k}(\mathbf {W}_{i};\varvec{\theta }_{0})]-n^{-1/2} \Bigg [E\sum _{k=1}^{K}\sum _{i=1}^{n}\psi _{\tau _{k}}\{Y_{i}-Q_Y(\tau _{k}; \varvec{\theta }|\mathbf {W}_{i})\}\varvec{h}_{k}(\mathbf {W}_{i}; \varvec{\theta }) \Bigg ]\Bigg |_{\varvec{\theta }= \hat{\varvec{\theta }}} \nonumber \\&\quad =o_{p}(1). \end{aligned}$$
(12)

Applying the Taylor expansion, we get

$$\begin{aligned}&\Bigg [E\sum _{k=1}^{K}\sum _{i=1}^{n}\psi _{\tau _{k}}\{Y_{i}-Q_Y(\tau _{k}; \varvec{\theta }|\mathbf {W}_{i})\}\varvec{h}_{k}(\mathbf {W}_{i}; \varvec{\theta }) \Bigg ]\Bigg |_{\varvec{\theta }= \hat{\varvec{\theta }}} =n\varvec{D}_{n}(\hat{\varvec{\theta }}-\varvec{\theta }_{0}) \nonumber \\&\quad +\, O_{p}(n ( \hat{\varvec{\theta }} - \varvec{\theta }_{0})^2), \end{aligned}$$
(13)

where

$$\begin{aligned} \varvec{D}_{n}= & {} n^{-1}\sum _{k=1}^{K}\sum _{i=1}^{n}\frac{\partial E\psi _{\tau _{k}}\{Y_{i}-Q_Y(\tau _{k};\varvec{\theta }|\mathbf {W}_{i})\}\varvec{h}_{k}(\mathbf {W}_{i};\varvec{\theta })}{\partial \varvec{\theta }}\Bigg |_{\varvec{\theta }=\varvec{\theta }_{0}}\\= & {} n^{-1}\sum _{k=1}^{K}\sum _{i=1}^{n} \frac{\partial ([\tau _{k} - F_{i}\{Q_Y(\tau _{k};\varvec{\theta }|\mathbf {W}_{i})\}]\varvec{h}_{k}(\mathbf {W}_{i};\varvec{\theta }))}{\partial \varvec{\theta }}\Bigg |_{\varvec{\theta }=\varvec{\theta }_{0}} \\= & {} n^{-1}\sum _{k=1}^{K}\sum _{i=1}^{n} \Bigg ([-f_{i}\{Q_Y(\tau _{k};\varvec{\theta }_{0}|\mathbf {W}_{i})\} \varvec{h}_{k}(\mathbf {W}_{i};\varvec{\theta }_{0})\varvec{h}^{T}_{k}(\mathbf {W}_{i};\varvec{\theta }_{0})] \\&+\,[\tau _{k} - F_{i}\{Q(\tau _{k})\}]\frac{\partial \varvec{h}_{k}(\mathbf {W}_{i};\varvec{\theta })}{\partial \varvec{\theta }}\Bigg |_{\varvec{\theta }=\varvec{\theta }_{0}} \Bigg ) \\= & {} n^{-1}\sum _{k=1}^{K}\sum _{i=1}^{n} \left[ -f_{i}\{Q_Y(\tau _{k};\varvec{\theta }_{0}|\mathbf {W}_{i})\} \varvec{h}_{k}(\mathbf {W}_{i};\varvec{\theta }_{0})\varvec{h}^{T}_{k}(\mathbf {W}_{i};\varvec{\theta }_{0})\right] . \end{aligned}$$

In addition, by the subgradient condition of quantile regression (pages 34–38 in Koenker 2005), we have

$$\begin{aligned}&n^{-1/2}\sum _{k=1}^{K}\sum _{i=1}^{n}\psi _{\tau _{k}}\{Y_{i}-Q_Y(\tau _{k};\hat{\varvec{\theta }}|\mathbf {W}_{i})\}\varvec{h}_{k}(\mathbf {W}_{i};\hat{\varvec{\theta }})=o_{p}(1). \end{aligned}$$
(14)

Combining (12), (13) and (14), we have

$$\begin{aligned}&-n^{-1/2}\sum _{k=1}^{K}\sum _{i=1}^{n}[\psi _{\tau _{k}}\{Y_{i} - Q_Y(\tau _{k}; \varvec{\theta }_{0}|\mathbf {W}_{i})\}\varvec{h}_{k}(\mathbf {W}_{i}; \varvec{\theta }_{0}) ] = n^{1/2}\mathbf {D}_{n}( \hat{\varvec{\theta }}-\varvec{\theta }_{0} )\\&\qquad +\, O_{p}(n^{1/2}( \hat{\varvec{\theta }}-\varvec{\theta }_{0} )^{2}) + o_{p}(1). \end{aligned}$$

This results in \(\hat{\varvec{\theta }}- \varvec{\theta }_{0}= O_{p}(n^{-1/2})\). Therefore,

$$\begin{aligned} n^{1/2}(\hat{\varvec{\theta }}-\varvec{\theta }_{0})=&-\varvec{D}^{-1}_{n} n^{-1/2}\sum _{k=1}^{K}\sum _{i=1}^{n}\varvec{\psi }_{\tau _{k}}\{Y_{i} - Q_Y(\tau _{k};\varvec{\theta }_{0}|\mathbf {W}_{i})\}h_{k}(\mathbf {W}_{i};\varvec{\theta }_{0}) +o_{p}(1). \end{aligned}$$

Following central limit theorem, by Assumption A4 and some simple calculation, we can obtain that \(n^{1/2}(\hat{\varvec{\theta }} - \varvec{\theta }_{0})\) is asymptotically normal with mean zero and variance \(\varvec{D}^{-1}\varvec{C}\varvec{D}^{-1}\). This completes the proof of Theorem 1. \(\square \)

Proof of Theorem 2

Denote

$$\begin{aligned}&T^{*}_{n}=\varvec{S}_{n}^{*T}\varvec{(}V^{*}_{n})^{-1} \varvec{S}_{n}^{*}, \end{aligned}$$

where \(\varvec{S}^{*}_{n}= \{S^{*}_{n,1},\ldots , S^{*}_{n,K}\}^{T}\), \(S^{*}_{n,k}=n^{-1/2}\sum _{i=1}^{n}p^{*}_{i}(\tau _{k};\varvec{\eta }_{k,0},u_{0}|\mathbf {W}_{i})\psi _{\tau _{k}}(e_{i,\tau _{k}})\), \(e_{i,\tau _{k}}=Y_{i}-Q_Y(\tau _{k};\varvec{\eta }_{k,0}, u_{0}|\mathbf {W}_{i})\), \(\varvec{V}^{*}_{n}\) is a \(K\times K\) matrix with the \((k,k^{'})\)th element

$$\begin{aligned}&\mathrm{Cov}(S^{*}_{n,k}, S^{*}_{n,k^{'}})\\&\quad = \mathrm{Cov} \left\{ n^{-1/2}\sum _{i=1}^{n}p^{*}_{i}(\tau _{k}; \varvec{\eta }_{k,0}, u_{0})\psi _{\tau _{k}}(e_{i,\tau _{k}}),\ n^{-1/2}\sum _{i=1}^{n}p^{*}_{i}(\tau _{k^{'}}; \varvec{\eta }_{k^{'},0}, u_{0})\psi _{\tau _{k^{'}}}(e_{i,\tau _{k^{'}}}) \right\} \\&\quad = n^{-1}\sum _{i=1}^{n}\mathrm{Cov} \{ p^{*}_{i}(\tau _{k}; \varvec{\eta }_{k,0}, u_{0})\psi _{\tau _{k}}(e_{i,\tau _{k}}),\ p^{*}_{i}(\tau _{k^{'}}; \varvec{\eta }_{k^{'},0}, u_{0})\psi _{\tau _{k^{'}}}(e_{i,\tau _{k^{'}}}) \} \\&\quad = n^{-1}\sum _{i=1}^{n} \{\min (\tau _{k}, \tau _{k^{'}})-\tau _{k}\tau _{k^{'}}\} p^{*}_{i}(\tau _{k}; \varvec{\eta }_{k,0}, u_{0})p^{*}_{i}(\tau _{k^{'}}; \varvec{\eta }_{k^{'},0}, u_{0}). \end{aligned}$$

Following central limit theorem, we have \(\varvec{S}^{*}_{n}\ \xrightarrow {d}\ N(0,\ \varvec{V}^{*}_{n}).\) Therefore, we can obtain

$$\begin{aligned}&\varvec{T}_{n}^{*} \xrightarrow {d}\ \chi ^{2}_{K}. \end{aligned}$$

To obtain the desired result, we need to show

$$\begin{aligned}&\varvec{V}_{n}= \varvec{V}^{*}_{n}+o_{p}(1), \end{aligned}$$
(15)

and

$$\begin{aligned}&\varvec{S}_{n}= \varvec{S}^{*}_{n}+o_{p}(1), \end{aligned}$$
(16)

It is easy to show that (15) holds since by Theorem 1,

$$\begin{aligned}&\Vert \hat{\varvec{\eta }}_{k}(u_{0}) - \varvec{\eta }_{k,0}\Vert =O_{p}(n^{-1/2}). \end{aligned}$$
(17)

For (16), it is sufficient to show that \(S_{n,k}=S^{*}_{n,k}+o_{p}(1)\) for any \(1\le k \le K\). Denote \( S_{n,k}(\varvec{\eta }_{k})=n^{-1/2}\sum _{i=1}^{n}p^{*}_{i}(\tau _{k}; \varvec{\eta }_{k},u_{0})\psi _{\tau _{k}}\{Y_{i}-Q_Y(\tau _{k};\varvec{\eta }_{k}, u_{0}|\mathbf {W}_{i})\}\), because we have

$$\begin{aligned} S_{n,k}(\varvec{\eta }_{k})-S^{*}_{n,k}= & {} n^{-1/2}\sum _{i=1}^{n}p^{*}_{i}(\tau _{k};\varvec{\eta }_{k},u_{0})\psi _{\tau _{k}}\{Y_{i}-Q_Y(\tau _{k};\varvec{\eta }_{k}, u_{0})\}\\&-n^{-1/2}\sum _{i=1}^{n}p^{*}_{i}(\tau _{k};\varvec{\eta }_{k,0}, u_{0})\psi _{\tau _{k}}\{Y_{i}-Q_Y(\tau _{k};\varvec{\eta }_{k,0}, u_{0})\}. \end{aligned}$$

Because \(E(S^{*}_{n,k})=0\), following He and Shao (2000), we have

$$\begin{aligned}&\sup _{\Vert \varvec{\eta }_{k} -\varvec{\eta }_{k,0}\Vert \le C_{4}n^{-1/2} } \Vert S_{n,k}(\varvec{\eta }_{k})-S^{*}_{n,k} - E\{S_{n,k}(\varvec{\eta }_{k})\} \Vert =o_{p}(1), \end{aligned}$$
(18)

where \(C_{4}\) is some positive constant. For any \(\varvec{\eta }_k\) such that \(\Vert \varvec{\eta }_k-\varvec{\eta }_{k,0}\Vert \le C_{4}n^{-1/2}\) , by the Taylor expansion, we get

$$\begin{aligned}&\ E\{S_{n,k}(\varvec{\eta }_{k}) \} = n^{-1/2}\sum _{i=1}^{n}E (p^{*}_{i}(\tau _{k};\varvec{\eta }_{k}, u_{0} )[ \tau _{k} - F_{i}\{Q_{Y}(\tau _{k};\varvec{\eta }_{k},u_{0})|\mathbf {W}_{i}\} ] ) \nonumber \\&\quad = n^{-1/2}\sum _{i=1}^{n}E ( p^{*}_{i}(\tau _{k};\varvec{\eta }_{k}, u_{0}) \ [ - f_{i}\{Q_{Y} (\tau _{k};\varvec{\eta }_{k,0},u_{0})|\mathbf {W}_{i} \} \mathbf {m}^{T}(\mathbf {W}_{i}, u_{0})(\varvec{\eta }_{k}-\varvec{\eta }_{k,0}) \nonumber \\&\quad \quad - f^{'}_{i}\{Q_{Y}(\tau _{k};\varvec{\eta }_{k,0},u_{0})\}\{\mathbf {m}^{T}(\mathbf {W}_{i}, u_{0})(\varvec{\eta }_{k} - \varvec{\eta }_{k,0})\}^{2} + o_{p}(\Vert \varvec{\eta }_{k} - \varvec{\eta }_{k,0}\Vert ^{2})] ) \nonumber \\&\quad = -n^{-1/2}\sum _{i=1}^{n}E (\varvec{p}^{*}_{i}(\tau _{k}; \varvec{\eta }_{k},u_{0} ) f^{'}_{i}\{Q_{Y}(\tau _{k};\varvec{\eta }_{k,0},u_{0})|\mathbf {W}_{i} \}\nonumber \\&\qquad [\{\mathbf {m}^{T}(\mathbf {W}_{i}, u_{0}) ( \varvec{\eta }_{k}-\varvec{\eta }_{k,0})\}^{2}+o(1)] ) \nonumber \\&\quad =o(1), \end{aligned}$$
(19)

where the third equality follows from the orthogonalization between \(\varvec{p}^{*}_{i}(\tau _{k}; \varvec{\eta }_{k}, u_{0})\) and \(\mathbf {m}(\mathbf {W}_{i},\) \(u_{0})\), the fourth equality is based on \(\Vert n^{-1}\sum _{i=1}^{n}E \varvec{p}^{*}_{i}(\tau _{k}; \varvec{\eta }_{k}, u_{0}) \Vert \le \Vert n^{-1}\sum _{i=1}^{n} E \varvec{p}_{i}(\tau _{k};\varvec{\eta }_{k},\) \(u_{0}) \Vert \le o(1)\). Let \(\varvec{\eta }_{k} = \hat{\varvec{\eta }}_{k}(u_{0})\), note that \(S_{n,k}= S_{n,k}\{ \hat{\varvec{\eta }}_{k}(u_{0}) \}\). By combining (16) with (19), we obtain (16). This completes the proof of Theorem 2. \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, H.J. & Zhu, Z. Composite change point estimation for bent line quantile regression. Ann Inst Stat Math 69, 145–168 (2017). https://doi.org/10.1007/s10463-015-0538-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-015-0538-5

Keywords

Navigation