Skip to main content
Log in

Wavelet variance analysis for gappy time series

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

The wavelet variance is a scale-based decomposition of the process variance for a time series and has been used to analyze, for example, time deviations in atomic clocks, variations in soil properties in agricultural plots, accumulation of snow fields in the polar regions and marine atmospheric boundary layer turbulence. We propose two new unbiased estimators of the wavelet variance when the observed time series is ‘gappy,’ i.e., is sampled at regular intervals, but certain observations are missing. We deduce the large sample properties of these estimators and discuss methods for determining an approximate confidence interval for the wavelet variance. We apply our proposed methodology to series of gappy observations related to atmospheric pressure data and Nile River minima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beran J. (1994) Statistics for long-memory processes. Chapman and Hall, New York

    MATH  Google Scholar 

  • Blackman R.B., Tukey J.W. (1958) The measurement of power spectra. Dover Publications, New York

    Google Scholar 

  • Breuer P., Major P. (1983) Central limit theorems for nonlinear functionals of Gaussian fields. Journal of Multivariate Analysis 13: 425–441

    Article  MATH  MathSciNet  Google Scholar 

  • Brillinger D.R. (1981) Time series. Oakland, Holden-Day Inc

    MATH  Google Scholar 

  • Bronez T.P. (1988) Spectral estimation of irregularly sampled multidimensional processes by genelarized prolate spheroidal sequences. IEEE Transactions on Acoustics, Speech, and Signal Processing 36: 1862–1873

    Article  MATH  Google Scholar 

  • Chiann C., Morettin P.A. (1998) A wavelet analysis for time series. Nonparametric Statistics 10: 1–46

    Article  MATH  MathSciNet  Google Scholar 

  • Craigmile P.F., Percival D.B. (2005) Asymptotic decorrelation of between-scale wavelet coefficients. IEEE Transactions on Information Theory 51: 1039–1048

    Article  MathSciNet  Google Scholar 

  • Daubechies I. (1992) Ten lectures on wavelets. SIAM, Philadelphia

    MATH  Google Scholar 

  • Feller W. (1966) An introduction to probability theory and its applications (VolII). New York, John Wiley

    Google Scholar 

  • Foster G. (1996) Wavelets for period analysis of unevenly sampled time series. The Astronomical Journal 112: 1709–1729

    Article  Google Scholar 

  • Fox R., Taqqu M.S. (1987) Central limit theorems for quadratic forms in random variables having long-range dependence. Probability Theory and Related Fields 74: 213–240

    Article  MATH  MathSciNet  Google Scholar 

  • Frick P., Grossmann A., Tchamitchian P. (1998) Wavelet analysis of signals with gaps. Journal of Mathematical Physics 39: 4091–4107

    Article  MATH  MathSciNet  Google Scholar 

  • Giraitis L., Surgailis D. (1985) CLT and other limit theorems for functionals of Gaussian processes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 70: 191–212

    Article  MATH  MathSciNet  Google Scholar 

  • Giraitis L., Taqqu M.S. (1998) Central limit theorems for quadratic forms with time-domain conditions. The Annals of Probability 26: 377–398

    Article  MATH  MathSciNet  Google Scholar 

  • Granger C.W.J., Joyeux R. (1980) An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis 1: 15–29

    Article  MATH  MathSciNet  Google Scholar 

  • Greenhall C.A., Howe D.A., Percival D.B. (1999) Total variance, an estimator of long-term frequency stability. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 46: 1183–1191

    Article  Google Scholar 

  • Ho H.C., Sun T.C. (1987) A central limit theorem for noninstantaneous filters of a stationary Gaussian process. Journal of Multivariate Analysis 22: 144–155

    Article  MATH  MathSciNet  Google Scholar 

  • Hosking J.R.M. (1981) Fractional differencing. Biometrika 68: 165–176

    Article  MATH  MathSciNet  Google Scholar 

  • Labat D., Ababou R., Mangin A. (2001) Introduction of wavelet analyses to rainfall/runoffs relationship for a karstic basin: the case of licq–atherey karstic system (France). Ground Water 39: 605–615

    Article  Google Scholar 

  • Lark R.M., Webster R. (2001) Changes in variance and correlation of soil properties with scale and location: analysis using an adapted maximal overlap discrete wavelet transform. European Journal of Soil Science 52: 547–562

    Article  Google Scholar 

  • Massel S.R. (2001) Wavelet analysis for processing of ocean surface wave records. Ocean Engineering 28: 957–987

    Article  Google Scholar 

  • Mondal, M., Percival, D.B. (2008). Wavelet analysis of variance for time series with missing values. Technical Report no. 535, Department of Statistics, University of Washington.

  • Nason G.P., von Sachs R. (1999) Wavelets in time series analysis. Philosophical Transactions of the Royal Society London Series A 357: 2511–2526

    Article  MATH  Google Scholar 

  • Nason G.P., von Sachs R., Kroisandt G. (2000) Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum. Journal of the Royal Statistical Society Series B Methodological 62: 271–292

    Article  Google Scholar 

  • Palma W., Del Pino G. (1999) Statistical analysis of incomplete long-range dependent data. Biometrika 86: 965–972

    Article  MATH  MathSciNet  Google Scholar 

  • Pelgrum H., Schmugge T., Rango A., Ritchie J., Kustas B. (2000) Length-scale analysis of surface albedo, temperature, and normalized difference vegetation index in desert grassland. Water Resources Research 36: 1757–1766

    Article  Google Scholar 

  • Percival D.B. (1995) On estimation of the wavelet variance. Biometrika 82: 619–631

    Article  MATH  MathSciNet  Google Scholar 

  • Percival D.B., Walden A.T. (2000) Wavelet methods for time series analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Pichot V., Gaspoz J.M., Molliex S., Antoniadis A., Busso T., Roche F., Costes F., Quintin L., Lacour J.R., Barthélémy J.C. (1999) Wavelet transform to quantify heart rate variability and to assess its instantaneous changes. Journal of Applied Physiology 86: 1081–1091

    Google Scholar 

  • Rybák J., Dorotovič I. (2002) Temporal variability of the coronal green-line index (1947–1998). Solar Physics 205: 177–187

    Article  Google Scholar 

  • Serroukh A., Walden A.T., Percival D.B. (2000) Statistical properties and uses of the wavelet variance estimator for the scale analysis of time series. Journal of the American Statistical Association 95: 184–196

    Article  MATH  MathSciNet  Google Scholar 

  • Stoica P., Larsson E.G., Li J. (2000) Adaptive filter-bank approack to restoration and spectral analysis of gapped data. The Astronomical Journal 163: 2163–2173

    Article  Google Scholar 

  • Sweldens W. (1997) The lifting scheme: a construction of second generation wavelets. SIAM Journal on Mathematical Analysis 19: 511–546

    MathSciNet  Google Scholar 

  • Torrence C., Compo G.P. (1998) A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79: 61–78

    Article  Google Scholar 

  • Toussoun O. (1925) Mémoire sur l’histoire du Nil. Mémoires a l’Institut d’Égypte 9: 366–404

    Google Scholar 

  • Tsakiroglou E., Walden A.T. (2002) From Blackman–Tukey pilot estimators to wavelet packet estimators: a modern perspective on an old spectrum estimation idea. Signal Processing 82: 1425–1441

    Article  MATH  Google Scholar 

  • Vio R., Strohmer T., Wamsteker W. (2000) On the reconstruction of irregularly sampled time series. Publications of the Astronomical Society of the Pacific 112: 74–90

    Article  Google Scholar 

  • Whitcher, B.J., Guttorp, P., Percival, D.B. (2000). Wavelet analysis of covariance with application to atmospheric time series. Journal of Geophysical Research 105, 14941–14962.

    Google Scholar 

  • Whitcher B.J., Byers S.D., Guttorp P., Percival D.B. (2002) Testing for homogeneity of variance in time series: long memory, wavelets and the Nile river. Water Resources Research 38: 1054–1070

    Article  Google Scholar 

  • Žurbenko I.G. (1986) The spectral analysis of time series. North-Holland, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis Mondal.

Additional information

Supported by NSF Grant DMS-02-22115.

About this article

Cite this article

Mondal, D., Percival, D.B. Wavelet variance analysis for gappy time series. Ann Inst Stat Math 62, 943–966 (2010). https://doi.org/10.1007/s10463-008-0195-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-008-0195-z

Keywords

Navigation