Skip to main content

Advertisement

Log in

Physical laws meet machine intelligence: current developments and future directions

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

The advent of technology including big data has allowed machine learning technology to strengthen its place in solving different science and engineering complex problems. Conventional deep machine learning algorithms work as a black box while dealing with various complex physics-driven problems. This problem can be reduced by integrating the physical laws with machine learning algorithms to ensure the developed models are complied with the physics and are potentially more explainable. This physics-informed machine learning (PIML) approach allows the integration of physical laws in the form of PDEs into the loss function of the neural network, hence, constraining the training of the complex problems based on both the physical, experimental, and mathematical boundaries. This, hence, allows the development of a more general predictive model for different science, engineering, and optimization tasks. Considering such advancements in the machine learning domain, this review presents the systematic progress in the development of integrating physics into the neural networks and recent applications in solving various forward and inverse problems in science and engineering. This paper can serve as a reference for the researchers, developers, and users to get all information they need before developing, implementing, and deploying AI models and smart systems that are equipped with the PIML methodology. It highlights the benefits and points out its limitations and recommendations for further development. The review also compares the traditional data-driven machine learning and PIML approach in dealing with the physics of complex problems. In general, the PIML has been found to provide consistent results with the exact solutions and physical nature of the system. However, similar to other AI system development, a more robust and complex AI algorithm requires more computational power which is also the case in PIML development and implementation. It should be noted that different terminologies such as physics-informed neural networks (PINN), science-informed neural networks, physics-inspired neural networks, and physics-constrained neural networks have been used in the literature that describes the very similar concept of integrating physical laws with machine intelligence. For consistency, we use the PIML term throughout this paper which covers all listed terminologies in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Modified from Karniadakis et al. (2021)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adalsteinsson D, Sethian JA (1995) A fast level set method for propagating interfaces. J Comput Phys 118(2):269–277

    MathSciNet  MATH  Google Scholar 

  • Adeli H (2001) Neural networks in civil engineering: 1989–2000. Comput Aided Civ Infrastruct Eng 16(2):126–142

    Google Scholar 

  • Adie J, Yang J, Zhang M, See S (2018) Deep learning for computational science and engineering. In: GPU technology conference No. S8242

  • Ahmad H, Seadawy AR, Khan TA (2020) Numerical solution of Korteweg–de Vries–Burgers equation by the modified variational iteration algorithm-II arising in shallow water waves. Phys Scr 95(4):045210

    Google Scholar 

  • Almajid MM, Abu-Alsaud MO (2020) Prediction of fluid flow in porous media using physics informed neural networks. In: Abu Dhabi international petroleum exhibition & conference. OnePetro, November 2020

  • Alvino C, Unal G, Slabaugh G, Peny B, Fang T (2007) Efficient segmentation based on Eikonal and diffusion equations. Int J Comput Math 84(9):1309–1324

    MathSciNet  MATH  Google Scholar 

  • Amezquita-Sanchez JP, Valtierra-Rodriguez M, Aldwaik M, Adeli H (2016) Neurocomputing in civil infrastructure. Sci Iran 23(6):2417–2428

    Google Scholar 

  • Araz JY, Criado JC, Spannowsky M (2021) Elvet—a neural network-based differential equation and variational problem solver. arXiv preprint. arXiv:2103.14575

  • Arzani A, Wang JX, D’Souza RM (2021) Uncovering near-wall blood flow from sparse data with physics-informed neural networks. Phys Fluids 33(7):071905

    Google Scholar 

  • Ayati AH, Haghighi A, Ghafouri HR (2022) Machine learning-assisted model for leak detection in water distribution networks using hydraulic transient flows. J Water Resour Plan Manag 148(2):04021104

    Google Scholar 

  • Aydin H, Akin S, Senturk E (2020) A proxy model for determining reservoir pressure and temperature for geothermal wells. Geothermics 88:101916

    Google Scholar 

  • Ball JE, Anderson DT, Chan CS Sr (2017) Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community. J Appl Remote Sens 11(4):042609

    Google Scholar 

  • Baydin AG, Pearlmutter BA, Radul AA, Siskind JM (2018) Automatic differentiation in machine learning: a survey. J Mach Learn Res 18:1–43

    MathSciNet  MATH  Google Scholar 

  • Behler J, Reuter K, Scheffler M (2008) Nonadiabatic effects in the dissociation of oxygen molecules at the Al (111) surface. Phys Rev B 77(11):115421

    Google Scholar 

  • Bengio Y (2000) Gradient-based optimization of hyperparameters. Neural Comput 12(8):1889–1900

    MathSciNet  Google Scholar 

  • Bergen KJ, Johnson PA, Maarten V, Beroza GC (2019) Machine learning for data-driven discovery in solid Earth geoscience. Science 363(6433):eaau0323

    Google Scholar 

  • Bhaskaran PK, Rajesh Kumar R, Barman R, Muthalagu R (2010) A new approach for deriving temperature and salinity fields in the Indian Ocean using artificial neural networks. J Mar Sci Technol 15(2):160–175

    Google Scholar 

  • Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164

    MATH  Google Scholar 

  • Biot MA, Willis DG (1957) The elastic coefficients of the theory of consolidation. J Appl Mech 24(4):594–601

    MathSciNet  Google Scholar 

  • Bisdom K, Bertotti G, Nick HM (2016) The impact of in-situ stress and outcrop-based fracture geometry on hydraulic aperture and upscaled permeability in fractured reservoirs. Tectonophysics 690:63–75

    Google Scholar 

  • Blank TB, Brown SD, Calhoun AW, Doren DJ (1995) Neural network models of potential energy surfaces. J Chem Phys 103(10):4129–4137

    Google Scholar 

  • Brown DF, Gibbs MN, Clary DC (1996) Combining ab initio computations, neural networks, and diffusion Monte Carlo: an efficient method to treat weakly bound molecules. J Chem Phys 105(17):7597–7604

    Google Scholar 

  • Browne M, Castelle B, Strauss D, Tomlinson R, Blumenstein M, Lane C (2007) Near-shore swell estimation from a global wind-wave model: spectral process, linear, and artificial neural network models. Coast Eng 54(5):445–460

    Google Scholar 

  • Buckley SE, Leverett M (1942) Mechanism of fluid displacement in sands. Trans AIME 146(01):107–116

    Google Scholar 

  • Byrd RH, Lu P, Nocedal J, Zhu C (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 16(5):1190–1208

    MathSciNet  MATH  Google Scholar 

  • Cai S, Li H, Zheng F, Kong F, Dao M, Karniadakis GE, Suresh S (2021a) Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease. Proc Natl Acad Sci U S A 118(13):e2100697118

    Google Scholar 

  • Cai S, Wang Z, Wang S, Perdikaris P, Karniadakis GE (2021b) Physics-informed neural networks for heat transfer problems. J Heat Transf 143(6):060801

    Google Scholar 

  • Cai S, Mao Z, Wang Z, Yin M, Karniadakis GE (2022) Physics-informed neural networks (PINNs) for fluid mechanics: a review. Acta Mech Sin 37:1727–1738

    MathSciNet  Google Scholar 

  • Carbogno C, Behler J, Groß A, Reuter K (2008) Fingerprints for spin-selection rules in the interaction dynamics of O2 at Al (111). Phys Rev Lett 101(9):096104

    Google Scholar 

  • Carleo G, Troyer M (2017) Solving the quantum many-body problem with artificial neural networks. Science 355(6325):602–606

    MathSciNet  MATH  Google Scholar 

  • Chan S, Elsheikh AH (2017) Parametrization and generation of geological models with generative adversarial networks. arXiv preprint. arXiv:1708.01810

  • Chaurasia V, Pal S (2014) Data mining approach to detect heart diseases. Int J Adv Comput Sci Inf Technol (IJACSIT) 2:56–66

    Google Scholar 

  • Chen M, Hao Y, Hwang K, Wang L, Wang L (2017) Disease prediction by machine learning over big data from healthcare communities. IEEE Access 5:8869–8879

    Google Scholar 

  • Chen RT, Rubanova Y, Bettencourt J, Duvenaud DK (2018) Neural ordinary differential equations. In: Advances in neural information processing systems 31 (NeurIPS 2018)

  • Chen F, Sondak D, Protopapas P, Mattheakis M, Liu S, Agarwal D, Di Giovanni M (2020) NeuroDiffEq: a Python package for solving differential equations with neural networks. J Open Source Softw 5(46):1931

    Google Scholar 

  • Cho C, Kim K, Park J, Cho YK (2018) Data-driven monitoring system for preventing the collapse of scaffolding structures. J Constr Eng Manag 144(8):04018077

    Google Scholar 

  • Choo J, Lee S (2018) Enriched Galerkin finite elements for coupled poromechanics with local mass conservation. Comput Methods Appl Mech Eng 341:311–332

    MathSciNet  MATH  Google Scholar 

  • Crnkovic-Friis L, Erlandson M (2015) Geology driven EUR prediction using deep learning. In: SPE annual technical conference and exhibition. OnePetro, September 2015

  • Cuomo S, Di Cola VS, Giampaolo F, Rozza G, Raissi M, Piccialli F (2022) Scientific machine learning through physics-informed neural networks: where we are and what's next. arXiv preprint. arXiv:2201.05624

  • Dallora AL, Eivazzadeh S, Mendes E, Berglund J, Anderberg P (2017) Machine learning and microsimulation techniques on the prognosis of dementia: A systematic literature review. PLoS ONE 12(6):e0179804

    Google Scholar 

  • D’Cruz J, Jadhav A, Dighe A, Chavan V, Chaudhari J (2016) Detection of lung cancer using backpropagation neural networks and genetic algorithm. Comput Technol Appl 6:823–827

    Google Scholar 

  • Davi C, Braga-Neto U (2022) PSO-PINN: physics-informed neural networks trained with particle swarm optimization. arXiv preprint. arXiv:2202.01943

  • De Ryck T, Mishra S (2021) Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs. arXiv preprint. arXiv:2106.14473

  • Dissanayake MWMG, Phan-Thien N (1994) Neural-network-based approximations for solving partial differential equations. Commun Numer Methods Eng 10(3):195–201

    MATH  Google Scholar 

  • Dwivedi V, Srinivasan B (2020) Physics informed extreme learning machine (PIELM)—a rapid method for the numerical solution of partial differential equations. Neurocomputing 391:96–118

    Google Scholar 

  • Eivazi H, Tahani M, Schlatter P, Vinuesa R (2021) Physics-informed neural networks for solving Reynolds-averaged Navier–Stokes equations. arXiv preprint. arXiv:2107.10711

  • Esfe MH, Saedodin S, Sina N, Afrand M, Rostami S (2015a) Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. Int Commun Heat Mass Transf 68:50–57

    Google Scholar 

  • Esfe MH, Rostamian H, Afrand M, Karimipour A, Hassani M (2015b) Modeling and estimation of thermal conductivity of MgO–water/EG (60:40) by artificial neural network and correlation. Int Commun Heat Mass Transf 68:98–103

    Google Scholar 

  • Fahle S, Prinz C, Kuhlenkötter B (2020) Systematic review on machine learning (ML) methods for manufacturing processes–Identifying artificial intelligence (AI) methods for field application. Procedia CIRP 93:413–418

    Google Scholar 

  • Fletcher R (2013) Practical methods of optimization. Wiley, Hoboken

    MATH  Google Scholar 

  • Fraces CG, Papaioannou A, Tchelepi H (2020) Physics informed deep learning for transport in porous media. Buckley Leverett Problem. arXiv preprint. arXiv:2001.05172

  • Frank M, Drikakis D, Charissis V (2020) Machine-learning methods for computational science and engineering. Computation 8(1):15

    Google Scholar 

  • Fuks O, Tchelepi HA (2020) Limitations of physics informed machine learning for nonlinear two-phase transport in porous media. J Mach Learn Model Comput 1(1):10

    Google Scholar 

  • Gao H, Sun L, Wang JX (2021) PhyGeoNet: physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain. J Comput Phys 428:110079

    MathSciNet  MATH  Google Scholar 

  • Gardner JR, Pleiss G, Bindel D, Weinberger KQ, Wilson AG (2018) Gpytorch: blackbox matrix–matrix Gaussian process inference with GPU acceleration. arXiv preprint. arXiv:1809.11165

  • Garg A, Mago V (2021) Role of machine learning in medical research: a survey. Comput Sci Rev 40:100370

    MathSciNet  Google Scholar 

  • Geneva N, Zabaras N (2020) Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks. J Comput Phys 403:109056

    MathSciNet  MATH  Google Scholar 

  • Ghaboussi J, Garrett JH, Wu X (1990) Material modeling with neural networks. In: Proceedings of the international conference on numerical methods in engineering: theory and applications, Swansea, UK, January 1990, pp 701–717

  • Ghaboussi J, Garrett JH Jr, Wu X (1991) Knowledge-based modeling of material behavior with neural networks. J Eng Mech 117(1):132–153

    Google Scholar 

  • Ghahramani Z (2015) Probabilistic machine learning and artificial intelligence. Nature 521(7553):452–459

    Google Scholar 

  • Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014). Generative adversarial nets. In: Advances in Neural Information Processing Systems 27 (NIPS 2014)

  • Grechka V, De La Pena A, Schisselé-Rebel E, Auger E, Roux PF (2015) Relative location of microseismicity. Geophysics 80(6):WC1–WC9

    Google Scholar 

  • Grimm R, Behrens T, Märker M, Elsenbeer H (2008) Soil organic carbon concentrations and stocks on Barro Colorado Island—Digital soil mapping using Random Forests analysis. Geoderma 146(1–2):102–113

    Google Scholar 

  • Gu J, Zhang Y, Dong H (2018) Dynamic behaviors of interaction solutions of (3 + 1)-dimensional shallow water wave equation. Comput Math Appl 76(6):1408–1419

    MathSciNet  MATH  Google Scholar 

  • Guo R, Li M, Yang F, Xu S, Abubakar A (2019) First arrival traveltime tomography using supervised descent learning technique. Inverse Prob 35(10):105008

    MathSciNet  MATH  Google Scholar 

  • Guo Y, Cao X, Liu B, Gao M (2020) Solving partial differential equations using deep learning and physical constraints. Appl Sci 10(17):5917

    Google Scholar 

  • Gupta S, Li L (2022) The potential of machine learning for enhancing CO2 sequestration, storage, transportation, and utilization-based processes: a brief perspective. JOM 74:414–428

    Google Scholar 

  • Haga JB, Osnes H, Langtangen HP (2012) On the causes of pressure oscillations in low-permeable and low-compressible porous media. Int J Numer Anal Meth Geomech 36(12):1507–1522

    Google Scholar 

  • Haghighat E, Juanes R (2021) Sciann: a keras/tensorflow wrapper for scientific computations and physics-informed deep learning using artificial neural networks. Comput Methods Appl Mech Eng 373:113552

    MathSciNet  MATH  Google Scholar 

  • Hansen K, Montavon G, Biegler F, Fazli S, Rupp M, Scheffler M, Von Lilienfeld OA, Tkatchenko A, Muller KR (2013) Assessment and validation of machine learning methods for predicting molecular atomization energies. J Chem Theory Comput 9(8):3404–3419

    Google Scholar 

  • He Q, Tartakovsky AM (2021) Physics-Informed neural network method for forward and backward advection-dispersion equations. Water Resour Res 57(7):e2020WR029479

    Google Scholar 

  • He Q, Barajas-Solano D, Tartakovsky G, Tartakovsky AM (2020) Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport. Adv Water Resour 141:103610

    Google Scholar 

  • Hengl T, Mendes de Jesus J, Heuvelink GB, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, Shangguan W, Wright MN, Geng X, Bauer-Marschallinger B, Guevara MA (2017) SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12(2):e0169748

    Google Scholar 

  • Hennigh O, Narasimhan S, Nabian MA, Subramaniam A, Tangsali K, Fang Z, Rietmann M, Byeon W, Choudhry S (2021) NVIDIA SimNet™: an AI-accelerated multi-physics simulation framework. In: International conference on computational science, June 2021. Springer, Cham, pp 447–461

  • Hsieh WW (2009) Machine learning methods in the environmental sciences: neural networks and kernels. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Hsieh YA, Tsai YJ (2020) Machine learning for crack detection: review and model performance comparison. J Comput Civ Eng 34(5):04020038

    Google Scholar 

  • Iakovlev V, Heinonen M, Lähdesmäki H (2020) Learning continuous-time PDEs from sparse data with graph neural networks. arXiv preprint. arXiv:2006.08956

  • Ibarra-Berastegi G, Saénz J, Esnaola G, Ezcurra A, Ulazia A (2015) Short-term forecasting of the wave energy flux: analogues, random forests, and physics-based models. Ocean Eng 104:530–539

    Google Scholar 

  • Ippolito M, Ferguson J, Jenson F (2021) Improving facies prediction by combining supervised and unsupervised learning methods. J Petrol Sci Eng 200:108300

    Google Scholar 

  • Islam M, Thakur MSH, Mojumder S, Hasan MN (2021) Extraction of material properties through multi-fidelity deep learning from molecular dynamics simulation. Comput Mater Sci 188:110187

    Google Scholar 

  • Jagtap AD, Karniadakis GE (2020) Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. Commun Comput Phys 28(5):2002–2041

    MathSciNet  MATH  Google Scholar 

  • Jagtap AD, Kawaguchi K, Karniadakis GE (2020a) Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. J Comput Phys 404:109136

    MathSciNet  MATH  Google Scholar 

  • Jagtap AD, Kawaguchi K, Em Karniadakis G (2020b) Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks. Proc R Soc A 476(2239):20200334

    MathSciNet  MATH  Google Scholar 

  • Jagtap AD, Kharazmi E, Karniadakis GE (2020c) Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems. Comput Methods Appl Mech Eng 365:113028

    MathSciNet  MATH  Google Scholar 

  • James SC, Zhang Y, O’Donncha F (2018) A machine learning framework to forecast wave conditions. Coast Eng 137:1–10

    Google Scholar 

  • Jiang B, Guo H (2013) Permutation invariant polynomial neural network approach to fitting potential energy surfaces. J Chem Phys 139(5):054112

    Google Scholar 

  • Juanes R, Jha B, Hager BH, Shaw JH, Plesch A, Astiz L, Dieterich JH, Frohlich C (2016) Were the May 2012 Emilia-Romagna earthquakes induced? A coupled flow-geomechanics modeling assessment. Geophys Res Lett 43(13):6891–6897

    Google Scholar 

  • Kadeethum T, Jørgensen TM, Nick HM (2020) Physics-informed neural networks for solving nonlinear diffusivity and Biot’s equations. PLoS ONE 15(5):e0232683

    Google Scholar 

  • Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L (2021) Physics-informed machine learning. Nat Rev Phys 3(6):422–440

    Google Scholar 

  • Karpatne A, Atluri G, Faghmous JH, Steinbach M, Banerjee A, Ganguly A, Shekhar S, Samatova N, Kumar V (2017) Theory-guided data science: a new paradigm for scientific discovery from data. IEEE Trans Knowl Data Eng 29(10):2318–2331

    Google Scholar 

  • Karpatne A, Ebert-Uphoff I, Ravela S, Babaie HA, Kumar V (2018) Machine learning for the geosciences: challenges and opportunities. IEEE Trans Knowl Data Eng 31(8):1544–1554

    Google Scholar 

  • Kauwe SK, Graser J, Vazquez A, Sparks TD (2018) Machine learning prediction of heat capacity for solid inorganics. Integr Mater Manuf Innov 7(2):43–51

    Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks, vol 4, November 1995. IEEE, Piscataway, pp 1942–1948

  • Kharazmi E, Zhang Z, Karniadakis GE (2019) Variational physics-informed neural networks for solving partial differential equations. arXiv preprint. arXiv:1912.00873

  • Kharazmi E, Zhang Z, Karniadakis GE (2021) hp-VPINNs: Variational physics-informed neural networks with domain decomposition. Comput Methods Appl Mech Eng 374:113547

    MathSciNet  MATH  Google Scholar 

  • Kim D (2019) A modified PML acoustic wave equation. Symmetry 11(2):177

    MATH  Google Scholar 

  • Kim SK, Ames S, Lee J, Zhang C, Wilson AC, Williams D (2017a) Massive scale deep learning for detecting extreme climate events. In: 7th International workshop on clmate informatics

  • Kim S, Hong S, Joh M, Song SK (2017b) Deeprain: ConvLSTM network for precipitation prediction using multichannel radar data. arXiv preprint. arXiv:1711.02316

  • Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint. arXiv:1412.6980

  • Kissas G, Yang Y, Hwuang E, Witschey WR, Detre JA, Perdikaris P (2020) Machine learning in cardiovascular flows modeling: predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks. Comput Methods Appl Mech Eng 358:112623

    MathSciNet  MATH  Google Scholar 

  • Kollmannsberger S, Dangella D, Jokeit M, Herrmann L (2021) Deep learning in computational mechanics. Springer, Cham

    MATH  Google Scholar 

  • Kong Q, Allen RM, Schreier L, Kwon YW (2016) MyShake: a smartphone seismic network for earthquake early warning and beyond. Sci Adv 2(2):e1501055

    Google Scholar 

  • Koryagin A, Khudorozkov R, Tsimfer S (2019) PyDEns: a Python framework for solving differential equations with neural networks. arXiv preprint. arXiv:1909.11544

  • Krishnaiah V, Narsimha G, Chandra NS (2013) Diagnosis of lung cancer prediction system using data mining classification techniques. Int J Comput Sci Inf Technol 4(1):39–45

    Google Scholar 

  • Krishnapriyan A, Gholami A, Zhe S, Kirby R, Mahoney MW (2021) Characterizing possible failure modes in physics-informed neural networks. Adv Neural Inf Process Syst 34:26548–26560

    Google Scholar 

  • Kumar Y, Chakraborty S (2021) GrADE: a graph based data-driven solver for time-dependent nonlinear partial differential equations. arXiv preprint. arXiv:2108.10639.

  • Kumar M, Yadav N (2011) Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: a survey. Comput Math Appl 62(10):3796–3811

    MathSciNet  MATH  Google Scholar 

  • Kumar A, Murali A, Priyadarshan A (2020) Subsurface velocity profiling by application of physics informed neural networks. In: Abu Dhabi international petroleum exhibition & conference. OnePetro, November 2020

  • Kuruvilla J, Gunavathi K (2014) Lung cancer classification using neural networks for CT images. Comput Methods Programs Biomed 113(1):202–209

    Google Scholar 

  • Kutz JN (2017) Deep learning in fluid dynamics. J Fluid Mech 814:1–4

    MATH  Google Scholar 

  • Kylasa S, Roosta F, Mahoney MW, Grama A (2019) GPU accelerated sub-sampled Newton’s method for convex classification problems. In: Proceedings of the 2019 SIAM international conference on data mining, May 2019. Society for Industrial and Applied Mathematics, Philadelphia, pp 702–710

  • Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9(5):987–1000

    Google Scholar 

  • Lagaris IE, Likas AC, Papageorgiou DG (2000) Neural-network methods for boundary value problems with irregular boundaries. IEEE Trans Neural Netw 11(5):1041–1049

    Google Scholar 

  • Le HM, Raff LM (2010) Molecular dynamics investigation of the bimolecular reaction BeH+ H2→ BeH2+ H on an ab initio potential-energy surface obtained using neural network methods with both potential and gradient accuracy determination. J Phys Chem A 114(1):45–53

    Google Scholar 

  • Lee H, Kang IS (1990) Neural algorithm for solving differential equations. J Comput Phys 91(1):110–131

    MathSciNet  MATH  Google Scholar 

  • Lee S, Wheeler MF, Wick T (2016) Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model. Comput Methods Appl Mech Eng 305:111–132

    MathSciNet  MATH  Google Scholar 

  • Li J, Jiang B, Guo H (2013) Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems. J Chem Phys 139(20):204103

    Google Scholar 

  • Li J, Feng Z, Schuster G (2017) Wave-equation dispersion inversion. Geophys J Int 208(3):1567–1578

    Google Scholar 

  • Li Z, Zheng H, Kovachki N, Jin D, Chen H, Liu B, Azizzadenesheli K, Anandkumar A (2021a) Physics-informed neural operator for learning partial differential equations. arXiv preprint. arXiv:2111.03794

  • Li X, Zhang L, Khan F, Han Z (2021b) A data-driven corrosion prediction model to support digitization of subsea operations. Process Saf Environ Prot 153:413–421

    Google Scholar 

  • Liang Y, Liao L, Guo Y (2019) A big data study: correlations between EUR and petrophysics/engineering/production parameters in shale formations by data regression and interpolation analysis. In: SPE hydraulic fracturing technology conference and exhibition. OnePetro, January 2019

  • Liao Y, Ming P (2019) Deep Nitsche method: deep Ritz method with essential boundary conditions. arXiv preprint. arXiv:1912.01309

  • Liao L, Zeng Y, Liang Y, Zhang H (2020) Data mining: a novel strategy for production forecast in tight hydrocarbon resource in Canada by random forest analysis. In: International petroleum technology conference. OnePetro, January 2020

  • Liu J, Tavener S, Wang Z (2018) Lowest-order weak Galerkin finite element method for Darcy flow on convex polygonal meshes. SIAM J Sci Comput 40(5):B1229–B1252

    MathSciNet  MATH  Google Scholar 

  • Liu M, Liang L, Sun W (2020) A generic physics-informed neural network-based constitutive model for soft biological tissues. Comput Methods Appl Mech Eng 372:113402

    MathSciNet  MATH  Google Scholar 

  • Liu HH, Zhang J, Liang F, Temizel C, Basri MA, Mesdour R (2021) Incorporation of physics into machine learning for production prediction from unconventional reservoirs: a brief review of the gray-box approach. SPE Reservoir Evaluation & Engineering, The Hague, pp 1–12

  • Lorenz S, Groß A, Scheffler M (2004) Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks. Chem Phys Lett 395(4–6):210–215

    Google Scholar 

  • Lorenz S, Scheffler M, Gross A (2006) Descriptions of surface chemical reactions using a neural network representation of the potential-energy surface. Phys Rev B 73(11):115431

    Google Scholar 

  • Lou Q, Meng X, Karniadakis GE (2020) Physics-informed neural networks for solving forward and inverse flow problems via the Boltzmann–BGK formulation. arXiv preprint. arXiv:2010.09147

  • Lu L, Meng X, Mao Z, Karniadakis GE (2021a) DeepXDE: a deep learning library for solving differential equations. SIAM Rev 63(1):208–228

    MathSciNet  MATH  Google Scholar 

  • Lu L, Jin P, Pang G, Zhang Z, Karniadakis GE (2021b) Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat Mach Intell 3(3):218–229

    Google Scholar 

  • Ludwig J, Vlachos DG (2007) Ab initio molecular dynamics of hydrogen dissociation on metal surfaces using neural networks and novelty sampling. J Chem Phys 127(15):154716

    Google Scholar 

  • Luo G, Tian Y, Bychina M, Ehlig-Economides C (2018, September) Production optimization using machine learning in Bakken shale. In: Unconventional resources technology conference, Houston, TX, 23–25 July 2018. Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers, pp 2174–2197

  • Makarynskyy O (2004) Improving wave predictions with artificial neural networks. Ocean Eng 31(5–6):709–724

    Google Scholar 

  • Mall S, Chakraverty S (2016) Application of Legendre neural network for solving ordinary differential equations. Appl Soft Comput 43:347–356

    Google Scholar 

  • Malladi R, Sethian JA (1996) A unified approach to noise removal, image enhancement, and shape recovery. IEEE Trans Image Process 5(11):1554–1568

    Google Scholar 

  • Manzhos S, Wang X, Dawes R, Carrington T (2006) A nested molecule-independent neural network approach for high-quality potential fits. J Phys Chem A 110(16):5295–5304

    Google Scholar 

  • Mao Z, Jagtap AD, Karniadakis GE (2020) Physics-informed neural networks for high-speed flows. Comput Methods Appl Mech Eng 360:112789

    MathSciNet  MATH  Google Scholar 

  • Markidis S (2021) The old and the new: can physics-informed deep-learning replace traditional linear solvers? Front Big Data. https://doi.org/10.3389/fdata.2021.669097

    Article  Google Scholar 

  • Masson YJ, Pride SR (2010) Finite-difference modeling of Biot’s poroelastic equations across all frequencies. Geophysics 75(2):N33–N41

    Google Scholar 

  • Matsuoka D, Nakano M, Sugiyama D, Uchida S (2017) Detecting precursors of tropical cyclone using deep neural networks. In: 7th International workshop on clmate informatics

  • Mattey R, Ghosh S (2022) A novel sequential method to train physics informed neural networks for Allen Cahn and Cahn Hilliard equations. Comput Methods Appl Mech Eng 390:114474

    MathSciNet  MATH  Google Scholar 

  • Mazumder RK, Salman AM, Li Y (2021) Failure risk analysis of pipelines using data-driven machine learning algorithms. Struct Saf 89:102047

    Google Scholar 

  • McClenny LD, Haile MA, Braga-Neto UM (2021) TensorDiffEq: scalable multi-GPU forward and inverse solvers for physics informed neural networks. arXiv preprint. arXiv:2103.16034

  • McFall KS, Mahan JR (2009) Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions. IEEE Trans Neural Networks 20(8):1221–1233

    Google Scholar 

  • Meade AJ Jr, Fernandez AA (1994a) The numerical solution of linear ordinary differential equations by feedforward neural networks. Math Comput Model 19(12):1–25

    MathSciNet  MATH  Google Scholar 

  • Meade AJ Jr, Fernandez AA (1994b) Solution of nonlinear ordinary differential equations by feedforward neural networks. Math Comput Model 20(9):19–44

    MathSciNet  MATH  Google Scholar 

  • Meng X, Karniadakis GE (2020) A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems. J Comput Phys 401:109020

    MathSciNet  MATH  Google Scholar 

  • Meng X, Li Z, Zhang D, Karniadakis GE (2020) PPINN: parareal physics-informed neural network for time-dependent PDEs. Comput Methods Appl Mech Eng 370:113250

    MathSciNet  MATH  Google Scholar 

  • Mishra S, Molinaro R (2021) Physics informed neural networks for simulating radiative transfer. J Quant Spectrosc Radiat Transfer 270:107705

    Google Scholar 

  • Montavon G, Samek W, Müller KR (2018) Methods for interpreting and understanding deep neural networks. Digit Signal Process 73:1–15

    MathSciNet  Google Scholar 

  • Moseley B, Markham A, Nissen-Meyer T (2018) Fast approximate simulation of seismic waves with deep learning. arXiv preprint. arXiv:1807.06873

  • Mouatadid S, Easterbrook S, Erler A (2017) Non-uniform spatial downscaling of climate variables. In: 7th International workshop on clmate informatics

  • Muther T, Syed FI, Dahaghi AK, Negahban S (2022a) Socio-inspired multi-cohort intelligence and teaching-learning-based optimization for hydraulic fracturing parameters design in tight formations. J Energy Resour Technol 144(7):073201

    Google Scholar 

  • Muther T, Syed FI, Lancaster AT, Salsabila FD, Dahaghi AK, Negahban S (2022b) Geothermal 4.0: AI-enabled geothermal reservoir development-current status, potentials, limitations, and ways forward. Geothermics 100:102348

    Google Scholar 

  • Nick HM, Raoof A, Centler F, Thullner M, Regnier P (2013) Reactive dispersive contaminant transport in coastal aquifers: numerical simulation of a reactive Henry problem. J Contam Hydrol 145:90–104

    Google Scholar 

  • Nordbotten JM (2014) Cell-centered finite volume discretizations for deformable porous media. Int J Numer Meth Eng 100(6):399–418

    MathSciNet  MATH  Google Scholar 

  • Ochoa LH, Niño LF, Vargas CA (2018) Fast magnitude determination using a single seismological station record implementing machine learning techniques. Geodesy Geodyn 9(1):34–41

    Google Scholar 

  • Oldenburg J, Borowski F, Öner A, Schmitz KP, Stiehm M (2022) Geometry aware physics informed neural network surrogate for solving Navier–Stokes equation (GAPINN). Adv Model Simul Eng Sci 9:8

    Google Scholar 

  • Paitz P, Gokhberg A, Fichtner A (2018) A neural network for noise correlation classification. Geophys J Int 212(2):1468–1474

    Google Scholar 

  • Pang G, Lu L, Karniadakis GE (2019) fPINNs: fractional physics-informed neural networks. SIAM J Sci Comput 41(4):A2603–A2626

    MathSciNet  MATH  Google Scholar 

  • Papale D, Valentini R (2003) A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Glob Change Biol 9(4):525–535

    Google Scholar 

  • Peng W, Zhang J, Zhou W, Zhao X, Yao W, Chen X (2021) IDRLnet: a physics-informed neural network library. arXiv preprint. arXiv:2107.04320

  • Pérez-Zárate D, Santoyo E, Acevedo-Anicasio A, Díaz-González L, García-López C (2019) Evaluation of artificial neural networks for the prediction of deep reservoir temperatures using the gas-phase composition of geothermal fluids. Comput Geosci 129:49–68

    Google Scholar 

  • Perol T, Gharbi M, Denolle M (2018) Convolutional neural network for earthquake detection and location. Sci Adv 4(2):e1700578

    Google Scholar 

  • Prudente FV, Neto JS (1998) The fitting of potential energy surfaces using neural networks. Application to the study of the photodissociation processes. Chem Phys Lett 287(5–6):585–589

    Google Scholar 

  • Rachman A, Zhang T, Ratnayake RC (2021) Applications of machine learning in pipeline integrity management: a state-of-the-art review. Int J Press Vessels Pip 193:104471

    Google Scholar 

  • Raff LM, Malshe M, Hagan M, Doughan DI, Rockley MG, Komanduri R (2005) Ab initio potential-energy surfaces for complex, multichannel systems using modified novelty sampling and feedforward neural networks. J Chem Phys 122(8):084104

    Google Scholar 

  • Raissi M, Karniadakis GE (2018) Hidden physics models: machine learning of nonlinear partial differential equations. J Comput Phys 357:125–141

    MathSciNet  MATH  Google Scholar 

  • Raissi M, Perdikaris P, Karniadakis GE (2017) Physics informed deep learning (Part I): data-driven solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561

  • Raissi M, Perdikaris P, Karniadakis GE (2018) Numerical Gaussian processes for time-dependent and nonlinear partial differential equations. SIAM J Sci Comput 40(1):A172–A198

    MathSciNet  MATH  Google Scholar 

  • Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707

    MathSciNet  MATH  Google Scholar 

  • Raissi M, Yazdani A, Karniadakis GE (2020) Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367(6481):1026–1030

    MathSciNet  MATH  Google Scholar 

  • Razakh TM, Wang B, Jackson S, Kalia RK, Nakano A, Nomura KI, Vashishta P (2021) PND: physics-informed neural-network software for molecular dynamics applications. SoftwareX 15:100789

    Google Scholar 

  • Reddy R, Nair RR (2013) The efficacy of support vector machines (SVM) in robust determination of earthquake early warning magnitudes in central Japan. J Earth Syst Sci 122(5):1423–1434

    Google Scholar 

  • Reich Y (1997) Machine learning techniques for civil engineering problems. Comput Aided Civ Infrastruct Eng 12(4):295–310

    Google Scholar 

  • Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, Carvalhais N (2019) Deep learning and process understanding for data-driven Earth system science. Nature 566(7743):195–204

    Google Scholar 

  • Ren P, Rao C, Liu Y, Wang J, Sun H (2021) PhyCRNet: physics-informed convolutional-recurrent network for solving spatiotemporal PDEs. arXiv preprint. arXiv:2106.14103

  • Richardson, A., 2018. Seismic full-waveform inversion using deep learning tools and techniques. arXiv preprint arXiv:1801.07232.

  • Rocha Filho TMD, Oliveira ZT Jr, Malbouisson LAC, Gargano R, Soares Neto JJ (2003) The use of neural networks for fitting potential energy surfaces: a comparative case study for the H molecule. Int J Quantum Chem 95(3):281–288

    Google Scholar 

  • Rodriguez-Torrado R, Ruiz P, Cueto-Felgueroso L, Green MC, Friesen T, Matringe S, Togelius J (2021) Physics-informed attention-based neural network for solving non-linear partial differential equations. arXiv preprint. arXiv:2105.07898

  • Rouy E, Tourin A (1992) A viscosity solutions approach to shape-from-shading. SIAM J Numer Anal 29(3):867–884

    MathSciNet  MATH  Google Scholar 

  • Runge J, Petoukhov V, Donges JF, Hlinka J, Jajcay N, Vejmelka M, Hartman D, Marwan N, Paluš M, Kurths J (2015) Identifying causal gateways and mediators in complex spatio-temporal systems. Nat Commun 6(1):1–10

    Google Scholar 

  • Rupp M (2015) Machine learning for quantum mechanics in a nutshell. Int J Quantum Chem 115(16):1058–1073

    Google Scholar 

  • Rupp M, Tkatchenko A, Müller KR, Von Lilienfeld OA (2012) Fast and accurate modeling of molecular atomization energies with machine learning. Phys Rev Lett 108(5):058301

    Google Scholar 

  • Samokhin A (2017) On nonlinear superposition of the KdV–Burgers shock waves and the behavior of solitons in a layered medium. Differ Geom Appl 54:91–99

    MathSciNet  MATH  Google Scholar 

  • Sapitang M, Ridwan W, Faizal Kushiar K, Najah Ahmed A, El-Shafie A (2020) Machine learning application in reservoir water level forecasting for sustainable hydropower generation strategy. Sustainability 12(15):6121

    Google Scholar 

  • Sattarin S, Muther T, Dahaghi AK, Negahban S (2021a) MicroPoreNet: complex and multilevels microporosity characterization of carbonate rocks through semisupervised CNN. In: 2021 IEEE International Conference on Imaging Systems and Techniques (IST), August 2021. IEEE, Piscataway, pp 1–5

  • Sattarin S, Muther T, Dahaghi AK, Negahban S, Bell B (2021b) GeoPixAI: from pixels to intelligent, unbiased and automated fast track subsurface characterization. In: 2021 IEEE International Conference on Imaging Systems and Techniques (IST), August 2021. IEEE, Piscataway, pp 1–5

  • Seghier MEAB, Keshtegar B, Tee KF, Zayed T, Abbassi R, Trung NT (2020) Prediction of maximum pitting corrosion depth in oil and gas pipelines. Eng Fail Anal 112:104505

    Google Scholar 

  • Seo S, Mohegh A, Ban-Weiss G, Liu Y (2017) Graph convolutional autoencoder with recurrent neural networks for spatiotemporal forecasting. In: 7th International workshop on clmate informatics

  • Shahin MA (2015) A review of artificial intelligence applications in shallow foundations. Int J Geotech Eng 9(1):49–60

    Google Scholar 

  • Shahin MA (2016) State-of-the-art review of some artificial intelligence applications in pile foundations. Geosci Front 7(1):33–44

    Google Scholar 

  • Shahnas MH, Yuen DA, Pysklywec RN (2018) Inverse problems in geodynamics using machine learning algorithms. J Geophys Res Solid Earth 123(1):296–310

    Google Scholar 

  • Shang Y, Wang F, Sun J (2022) Deep Petrov–Galerkin method for solving partial differential equations. arXiv preprint. arXiv:2201.12995

  • Sherman CS, Mellors RJ, Morris JP (2019) Subsurface monitoring via physics-informed deep neural network analysis of DAS. In: 53rd US rock mechanics/geomechanics symposium. OnePetro, June 2019

  • Shirvany Y, Hayati M, Moradian R (2009) Multilayer perceptron neural networks with novel unsupervised training method for numerical solution of the partial differential equations. Appl Soft Comput 9(1):20–29

    Google Scholar 

  • Shoji D, Noguchi R, Otsuki S, Hino H (2018) Classification of volcanic ash particles using a convolutional neural network and probability. Sci Rep 8(1):1–12

    Google Scholar 

  • Shukla K, Jagtap AD, Blackshire JL, Sparkman D, Karniadakis GE (2021a) A physics-informed neural network for quantifying the microstructure properties of polycrystalline nickel using ultrasound data. arXiv preprint. arXiv:2103.14104

  • Shukla K, Jagtap AD, Karniadakis GE (2021b) Parallel physics-informed neural networks via domain decomposition. J Comput Phys 447:110683

    MathSciNet  MATH  Google Scholar 

  • Sirignano J, Spiliopoulos K (2018) DGM: A deep learning algorithm for solving partial differential equations. J Comput Phys 375:1339–1364

    MathSciNet  MATH  Google Scholar 

  • Sokolova I, Bastisya MG, Hajibeygi H (2019) Multiscale finite volume method for finite-volume-based simulation of poroelasticity. J Comput Phys 379:309–324

    MathSciNet  MATH  Google Scholar 

  • Song Y, Sung W, Jang Y, Jung W (2020) Application of an artificial neural network in predicting the effectiveness of trapping mechanisms on CO2 sequestration in saline aquifers. Int J Greenhouse Gas Control 98:103042

    Google Scholar 

  • Soomro AA, Mokhtar AA, Kurnia JC, Lashari N, Lu H, Sambo C (2022) Integrity assessment of corroded oil and gas pipelines using machine learning: a systematic review. Eng Fail Anal 131:105810

    Google Scholar 

  • Sprunger C, Muther T, Syed FI, Dahaghi AK, Neghabhan S (2021) State of the art progress in hydraulic fracture modeling using AI/ML techniques. Model Earth Syst Environ 8:1–13

    Google Scholar 

  • Sumpter BG, Noid DW (1992) Potential energy surfaces for macromolecules. A neural network technique. Chem Phys Lett 192(5–6):455–462

    Google Scholar 

  • Sun L, Gao H, Pan S, Wang JX (2020) Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput Methods Appl Mech Eng 361:112732

    MathSciNet  MATH  Google Scholar 

  • Syed FI, Alshamsi M, Dahaghi AK, Neghabhan S (2020a) Artificial lift system optimization using machine learning applications. Petroleum 8(2):219–226

    Google Scholar 

  • Syed FI, AlShamsi A, Dahaghi AK, Neghabhan S (2020b) Application of ML & AI to model petrophysical and geo-mechanical properties of shale reservoirs—a systematic literature review. Petroleum 8(2):158–166

    Google Scholar 

  • Syed FI, Muther T, Dahaghi AK, Negahban S (2021a) AI/ML assisted shale gas production performance evaluation. J Petrol Explor Prod Technol 11(9):3509–3519

    Google Scholar 

  • Syed FI, Alnaqbi S, Muther T, Dahaghi AK, Negahban S (2021b) Smart shale gas production performance analysis using machine learning applications. Petrol Res 7(1):21–31

    Google Scholar 

  • Syed FI, Muther T, Dahaghi AK, Neghabhan S (2022a) CO2 EOR performance evaluation in an unconventional reservoir through mechanistic constrained proxy modeling. Fuel 310:122390

    Google Scholar 

  • Syed FI, Muther T, Dahaghi AK, Negahban S (2022b) Low-rank tensors applications for dimensionality reduction of complex hydrocarbon reservoirs. Energy 244:122680

    Google Scholar 

  • Syed FI, Dahaghi AK, Muther T (2022c) Laboratory to field scale assessment for EOR applicability in tight oil reservoirs. Petrol Sci 19(5):2131–2149

    Google Scholar 

  • Tartakovsky AM, Marrero CO, Perdikaris P, Tartakovsky GD, Barajas-Solano D (2020) Physics-informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems. Water Resour Res 56(5):e2019WR026731

    Google Scholar 

  • Taylor RA, Pare JR, Venkatesh AK, Mowafi H, Melnick ER, Fleischman W, Hall MK (2016) Prediction of in-hospital mortality in emergency department patients with sepsis: a local big data-driven, machine learning approach. Acad Emerg Med 23(3):269–278

    Google Scholar 

  • Thanh HV, Sugai Y, Sasaki K (2020) Application of artificial neural network for predicting the performance of CO 2 enhanced oil recovery and storage in residual oil zones. Sci Rep 10(1):1–16

    Google Scholar 

  • Tipireddy, R., Perdikaris, P., Stinis, P. and Tartakovsky, A., 2019. A comparative study of physics-informed neural network models for learning unknown dynamics and constitutive relations. arXiv preprint arXiv:1904.04058.

  • van Milligen BP, Tribaldos V, Jiménez JA (1995) Neural network differential equation and plasma equilibrium solver. Phys Rev Lett 75(20):3594

    Google Scholar 

  • Voytan D, Sen MK (2020) Wave propagation with physics informed neural networks. In: SEG international exposition and annual meeting. OnePetro, October 2020

  • Waheed UB, Haghighat E, Alkhalifah T, Song C, Hao Q (2021) PINNeik: Eikonal solution using physics-informed neural networks. Comput Geosci 155:104833

    Google Scholar 

  • Wang HF (2017) Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton University Press, Princeton

    Google Scholar 

  • Wang Z, Di H, Shafiq MA, Alaudah Y, AlRegib G (2018) Successful leveraging of image processing and machine learning in seismic structural interpretation: a review. Lead Edge 37(6):451–461

    Google Scholar 

  • Wang Z, Poon J, Sun S, Poon S (2019) Attention-based multi-instance neural network for medical diagnosis from incomplete and low quality data. In: 2019 International joint conference on neural networks (IJCNN), July 2019. IEEE, Piscataway, pp 1–8

  • Wang B, Cai J, Liu C, Yang J, Ding X (2020) Harnessing a novel machine-learning-assisted evolutionary algorithm to co-optimize three characteristics of an electrospun oil sorbent. ACS Appl Mater Interfaces 12(38):42842–42849

    Google Scholar 

  • Wang S, Sankaran S, Perdikaris P (2022) Respecting causality is all you need for training physics-informed neural networks. arXiv preprint. arXiv:2203.07404

  • Wei H, Zhao S, Rong Q, Bao H (2018) Predicting the effective thermal conductivities of composite materials and porous media by machine learning methods. Int J Heat Mass Transf 127:908–916

    Google Scholar 

  • Wenzlau F, Müller TM (2009) Finite-difference modeling of wave propagation and diffusion in poroelastic media. Geophysics 74(4):T55–T66

    Google Scholar 

  • Willard J, Jia X, Xu S, Steinbach M, Kumar V (2020) Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems. ACM Comput Surv 10(1145/1122445):1122456

    Google Scholar 

  • Wiszniowski J, Plesiewicz BM, Trojanowski J (2014) Application of real time recurrent neural network for detection of small natural earthquakes in Poland. Acta Geophys 62(3):469–485

    Google Scholar 

  • Wright LG, Onodera T, Stein MM, Wang T, Schachter DT, Hu Z, McMahon PL (2021) Deep physical neural networks enabled by a backpropagation algorithm for arbitrary physical systems. arXiv preprint arXiv:2104.13386

  • Xie Y, Ebad Sichani M, Padgett JE, DesRoches R (2020) The promise of implementing machine learning in earthquake engineering: a state-of-the-art review. Earthq Spectra 36(4):1769–1801

    Google Scholar 

  • Xu K, Darve E (2020) ADCME: learning spatially-varying physical fields using deep neural networks. arXiv preprint. arXiv:2011.11955

  • Yang Y, Perdikaris P (2019) Adversarial uncertainty quantification in physics-informed neural networks. J Comput Phys 394:136–152

    MathSciNet  MATH  Google Scholar 

  • Yang L, Zhang D, Karniadakis GE (2020) Physics-informed generative adversarial networks for stochastic differential equations. SIAM J Sci Comput 42(1):A292–A317

    MathSciNet  MATH  Google Scholar 

  • Yang L, Meng X, Karniadakis GE (2021) B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. J Comput Phys 425:109913

    MathSciNet  MATH  Google Scholar 

  • Yeh IC (1998) Modeling of strength of high-performance concrete using artificial neural networks. Cem Concr Res 28(12):1797–1808

    Google Scholar 

  • Yu B (2018) The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Commun Math Stat 6(1):1–12

    MathSciNet  MATH  Google Scholar 

  • Zhang Z, Gu GX (2021) Physics-informed deep learning for digital materials. Theor Appl Mech Lett 11(1):100220

    Google Scholar 

  • Zhang L, Zhang L, Du B (2016) Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Geosci Remote Sens Mag 4(2):22–40

    Google Scholar 

  • Zhang D, Lu L, Guo L, Karniadakis GE (2019) Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems. J Comput Phys 397:108850

    MathSciNet  MATH  Google Scholar 

  • Zhang D, Guo L, Karniadakis GE (2020) Learning in modal space: solving time-dependent stochastic PDEs using physics-informed neural networks. SIAM J Sci Comput 42(2):A639–A665

    MathSciNet  MATH  Google Scholar 

  • Zhou L, Zhang Y, Hu Z, Yu Z, Luo Y, Lei Y, Lei H, Lei Z, Ma Y (2019) Analysis of influencing factors of the production performance of an enhanced geothermal system (EGS) with numerical simulation and artificial neural network (ANN). Energy Build 200:31–46

    Google Scholar 

  • Zhu Y, Zabaras N, Koutsourelakis PS, Perdikaris P (2019) Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J Comput Phys 394:56–81

    MathSciNet  MATH  Google Scholar 

  • Zimmerman DC, Hasselman T, Anderson M (2005) Approximation and calibration of nonlinear structural dynamics. Nonlinear Dyn 39(1):113–128

    MATH  Google Scholar 

  • Zobeiry N, Humfeld KD (2021) A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications. Eng Appl Artif Intell 101:104232

    Google Scholar 

  • Zubov K, McCarthy Z, Ma Y, Calisto F, Pagliarino V, Azeglio S, Bottero L, Luján E, Sulzer V, Bharambe A, Vinchhi N (2021) NeuralPDE: automating physics-informed neural networks (PINNs) with error approximations. arXiv preprint. arXiv:2107.09443

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Temoor Muther.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muther, T., Dahaghi, A.K., Syed, F.I. et al. Physical laws meet machine intelligence: current developments and future directions. Artif Intell Rev 56, 6947–7013 (2023). https://doi.org/10.1007/s10462-022-10329-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-022-10329-8

Keywords

Navigation