Skip to main content

Advertisement

Log in

Probability of HIV Transmission During Acute Infection in Rakai, Uganda

  • Original Paper
  • Published:
AIDS and Behavior Aims and scope Submit manuscript

Abstract

Accurate estimates of the probability of HIV transmission during various stages of infection are needed to inform epidemiological models. Very limited information is available about the probability of transmission during acute HIV infection. We conducted a secondary analysis of published data from the Rakai, Uganda seroconversion study. Mathematical and computer-based models were used to quantify the per-act and per-partnership transmission probabilities during acute and chronic HIV infection, and to estimate how many of the transmission events reported in the Rakai study were due to acute-phase HIV transmission. The average per-act transmission probability during acute infection equaled 0.03604 vs. 0.00084 for chronic HIV infection. Overall, HIV was transmitted during acute infection in 46.5% of 23 “incident index partner couples.” Acute-phase transmission accounted for 89.1% of all transmission events in the first 20 months of follow-up. These results highlight the substantial risk of transmission during acute HIV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Association of State and Territorial Health Officials (2006). Acute HIV infection—an opportunity to enhance primary prevention. ASTHO Bulletin, March, 1–16.

  • Brookmeyer, R., & Gail, M. H. (1994). AIDS epidemiology: A quantitative approach. New York: Oxford University Press.

    Google Scholar 

  • Busch, M. P., & Satten, G. A. (1997). Time course of viremia and antibody seroconversion following human immunodeficiency virus exposure. American Journal of Medicine, 102, 117–126.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, M. S., & Pilcher, C. D. (2005). Amplified HIV transmission and new approaches to HIV prevention. Journal of Infectious Diseases, 191, 1391–1393.

    Article  PubMed  Google Scholar 

  • Gray, R. H., Li, X., Kigozi, G., Serwadda, D., Nalugoda, F., Watya, S., Reynolds, S. J., & Wawer, M. (2007). The impact of male circumcision on HIV incidence and cost per infection prevented: A stochastic simulation model from Rakai, Uganda. AIDS, 21, 845–850.

    Article  PubMed  Google Scholar 

  • Hayes, R. J., & White, R. G. (2006). Amplified HIV transmission during early-stage infection. Journal of Infectious Diseases, 193, 604–605.

    Article  PubMed  Google Scholar 

  • Hollingsworth, T. D., Anderson, R. M., & Fraser, C. (2006). Has the role of primary HIV been overstated? Presented at 13th Conference on Retroviruses and Opportunistic Infections [Abstract 913], Feb. 5–8, 2006. Denver CO.

  • Jacquez, J. A., Koopman, J. S., Simon, C. P., & Longini, I. M. (1994). Role of the primary infection in epidemic of HIV infection in gay cohorts. Journal of Acquired Immune Deficiency Syndromes, 7, 1169–1184.

    PubMed  CAS  Google Scholar 

  • Jewell, N. P., & Shiboski, S. C. (1990). Statistical analysis of HIV infectivity based on partner studies. Biometrics, 46, 1133–1150.

    Article  PubMed  CAS  Google Scholar 

  • Kahn, J. O., & Walker, B. D. (1998). Acute human immunodeficiency virus type 1 infection. New England Journal of Medicine, 339, 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Koopman, J. S., Jacquez, J. A., Welch, G. W., Simon, C. P., Foxman, B., Pollock, S. M., Barth-Jones, D., Adams, A. L., & Lange, K. (1997). The role of early HIV infection in the spread of HIV through populations. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, 14, 249–258.

    PubMed  CAS  Google Scholar 

  • Leynaert, B., Downs, A. M., & de Vincenzi, I. (1998). Heterosexual transmission of human immunodeficiency virus. American Journal of Epidemiology, 148, 88–96.

    PubMed  CAS  Google Scholar 

  • Lindbäck, S., Karlsson, A. C., Mittler, J., Blaxhult, A., Carlsson, M., Briheim, G., Sönnerborg, A., & Gaines, H. (2000). Viral dynamics in primary HIV-1 infection. AIDS, 14, 2283–2291.

    Article  PubMed  Google Scholar 

  • Orroth, K. K., White, R. G., Korenromp, E. L., Bakker, R., Changalucha, J., Habbema, D. F., & Hayes, R. J. (2006). Empirical observations underestimate the proportion of human immunodeficiency virus infections attributed to sexually transmitted diseases in the Mwanza and Rakai sexually transmitted disease treatment trials: Simulation results. Sexually Transmitted Diseases, 33, 536–544.

    Article  PubMed  Google Scholar 

  • Pearson, C. R., Kurth, A. E., Cassels, D. P., Martin, D. P., Simoni, J. M., Hoff, P., Matediana, E., & Gloyd, S. (2007). Modeling HIV transmission risk among Mozambicans prior to their initiating highly active antiretroviral therapy. AIDS Care, 19, 594–604.

    Article  PubMed  CAS  Google Scholar 

  • Pettifor, A. E., Hudgens, M. G., Levandowski, B. A., Rees, H. V., & Cohen, M. S. (2006). Response to letters from Jewkes, Parker and Colvin, and Potterat et al. AIDS, 20, 956–958.

    Article  Google Scholar 

  • Pilcher, C. D., Tien, H. C., Eron, J. J. Jr., Vernazza, P. L., Leu, S. Y., Stewart, P. W., Goh, L. E., & Cohen, M. S. (2004). Brief but efficient: Acute HIV infection and the sexual transmission of HIV. Journal of Infectious Diseases, 189, 1785–1792.

    Article  PubMed  Google Scholar 

  • Pinkerton, S. D. (2007). How many sexually-acquired HIV infections in the US are due to acute-phase HIV transmission? AIDS, 21, 1625–1629.

    Article  PubMed  Google Scholar 

  • Pinkerton, S. D., Chesson, H. W., Crosby, R. A., & Layde, P. M. (under review). Linearity and non-linearity in HIV/STI transmission dynamics: Implications for the evaluation of sexual risk reduction interventions.

  • Pinkerton, S. D., Holtgrave, D. R., Leviton, L. C., Wagstaff, D. A., & Abramson, P. R. (1998). Model-based evaluation of HIV prevention interventions. Evaluation Review, 22, 155–174.

    Article  PubMed  CAS  Google Scholar 

  • Rapatski, B. L., Suppe, F., & Yorke, J. A. (2005). HIV epidemic driven by late disease stage transmission. Journal of Acquired Immune Deficiency Syndromes, 38, 241–253.

    PubMed  Google Scholar 

  • Robinson, N. J., Mulder, D., Auvert, B., Whitworth, J., & Hayes, R. (1999). Type of partnership and heterosexual spread of HIV infection in rural Uganda: Results from simulation modelling. International Journal of STD & AIDS, 10, 718–725.

    Article  CAS  Google Scholar 

  • Wawer, M. J., Gray, R. H., Sewankambo, N. K., Serwadda, D., Li, X., Laeyendecker, O., Kiwanuka, N., Kigozi, G., Kiddugavu, M., Lutalo, T., Nalugoda, F., Wabwire-Mangen, F., Meehan, M. P., & Quinn, T. C. (2005). Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda. Journal of Infectious Diseases, 191, 1403–1409.

    Article  PubMed  Google Scholar 

  • Wawer, M. J., Gray, R. H., Sewankambo, N. K., Serwadda, D., Paxton, L., Berkley, S., McNairn, D., Wabwire-Mangen, F., Li. C., Nalugoda, F., Kiwanuka, N., Lutalo, T., Brookmeyer, R., Kelly, R., & Quinn, T. C. (1998). A randomized, community trial of intensive sexually transmitted disease control for AIDS prevention, Rakai, Uganda. AIDS, 12, 1211–1225.

    Article  PubMed  CAS  Google Scholar 

  • Wawer, M. J., Serwadda, D., Quinn, T. C., Sewankambo, N., Kiwanuka, N., Li, X., & Gray, R. H. (2006). Reply to Gisselquist and Potterat. Journal of Infectious Diseases, 192, 1499–1500.

    Article  Google Scholar 

  • Wawer, M. J., Sewankambo, N. K., Serwadda, D., Quinn, T. C., Paxton, L. A., Kiwanuka, N., Wabwire-Manger, F., Li, C., Lutalo, C., Nalugoda, F., Gaydos, C. A., Moulton, L. H., Meehan, M. O., & Ahmed, S. (1999). Control of sexually transmitted diseases for AIDS prevention in Uganda: A randomised community trial. Lancet, 353, 525–535.

    Article  PubMed  CAS  Google Scholar 

  • Xiridou, M., Geskus, R., de Wit, J., Coutinho, R., & Kretzschmar, M. (2004). Primary HIV infection as source of HIV transmission within steady and casual partnerships among homosexual men. AIDS, 18, 1311–1320.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants R01-MH077511 and P30-MH52776 from the National Institute of Mental Health. The author thanks Harrell Chesson, Ph.D. and the anonymous reviewers for their thoughtful comments on the manuscript, Andrew Petroll, M.D. for helpful discussions, and Leah Przedwiecki for assisting with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Pinkerton.

Appendix

Appendix

As in the main text, let α(d) denote the per-act transmission probability on day d of the acute-phase of infection. The overall risk of HIV transmission from an acutely infected person to his or her sex partner is then \( \gamma = 1 - (1 - \alpha (d_{1} )){\text{ }}(1 - \alpha (d_{2} )) \ldots (1 - \alpha (d_{n} )), \) where n is the total number of unprotected sex acts during the acute-phase of infection and α(d k ) denotes the per-act transmission probability associated with the kth sex act, which occurs on day d k . This per-partnership transmission risk value can be approximated by \( \gamma _{{\text{A}}} = 1 - (1 - \alpha _{{\text{A}}} )^{n} , \) where \( \alpha _{{\text{A}}} = (\alpha (d_{1} ) + \alpha (d_{2} ) + \cdots + \alpha (d_{n} ))/n \) is the corresponding average per-act transmission probability.

Claim The average per-act transmission probability-based approximation, γA, never overestimates the true per-partnership transmission risk, γ (i.e., γA ≤ γ).

Proof First we will establish the following lemma: if x 1, x 2,..., x n are positive real numbers, then \( x_{1} *x_{2} * \cdots *x_{n} \le ((x_{1} + x_{2} + \cdots + x_{n} )/n)^{n} \). The proof is by induction on n. The claim is trivial for n = 1. Assume the claim holds for some n ≥ 1. Then \( x_{1} *x_{2} * \cdots *x_{n} *x_{{n + 1}} \le x_{{n + 1}} *((x_{1} + x_{2} + \cdots + x_{n} )/n)^{n} \). To prove that \( x_{1} *x_{2} * \cdots *x_{n} *x_{{n + 1}} \le ((x_{1} + x_{2} + \cdots + x_{n} + x_{{n + 1}} )/(n + 1))^{{n + 1}} \) it suffices to show that \( x_{{n + 1}} *((x_{1} + x_{2} + \cdots + x_{n} )/n)^{n} \le ((x_{1} + x_{2} + \cdots + x_{n} + x_{{n + 1}} )/(n + 1))^{{n + 1}} \), or equivalently, that \( f(y) = (x + y)^{{n + 1}} - ((n + 1)^{{n + 1}} /n^{n} )x^{n} y \ge 0 \) (here, \( x = x_{1} + x_{2} + \cdots + x_{n} \) and y = x n+1). It is easily established through differential calculus that the minimum value of f(y) equals 0 (this occurs when y = x/n) and therefore f(y) ≥ 0 whenever x, y ≥ 0.

To show that γA ≤ γ, let x k  = 1 − α(d k ) for k = 1, 2,..., n and notice that \( \alpha _{{\text{A}}} = (\alpha (d_{1} ) + \alpha (d_{2} ) + \cdots + \alpha (d_{n} ))/n = 1 - (x_{1} + x_{2} + \cdots + x_{n} )/n \). Then, γA ≤ γ, if and only if (\( 1 - \alpha (d_{1} ))*(1 - \alpha (d_{2} ))* \cdots *(1 - \alpha (d_{n} )) \le (1 - \alpha _{{\text{A}}} )^{n} \), or equivalently, \( x_{1} *x_{2} * \cdots *x_{n} \le ((x_{1} + x_{2} + \cdots + x_{n} )/n)^{n} \), which is true by the lemma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinkerton, S.D. Probability of HIV Transmission During Acute Infection in Rakai, Uganda. AIDS Behav 12, 677–684 (2008). https://doi.org/10.1007/s10461-007-9329-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10461-007-9329-1

Keywords

Navigation