Skip to main content

Advertisement

Log in

Using focal point learning to improve human–machine tacit coordination

  • Published:
Autonomous Agents and Multi-Agent Systems Aims and scope Submit manuscript

Abstract

We consider an automated agent that needs to coordinate with a human partner when communication between them is not possible or is undesirable (tacit coordination games). Specifically, we examine situations where an agent and human attempt to coordinate their choices among several alternatives with equivalent utilities. We use machine learning algorithms to help the agent predict human choices in these tacit coordination domains. Experiments have shown that humans are often able to coordinate with one another in communication-free games, by using focal points, “prominent” solutions to coordination problems. We integrate focal point rules into the machine learning process, by transforming raw domain data into a new hypothesis space. We present extensive empirical results from three different tacit coordination domains. The Focal Point Learning approach results in classifiers with a 40–80% higher correct classification rate, and shorter training time, than when using regular classifiers, and a 35% higher correct classification rate than classical focal point techniques without learning. In addition, the integration of focal points into learning algorithms results in agents that are more robust to changes in the environment. We also present several results describing various biases that might arise in Focal Point based coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arkin R. C. (1992) Cooperation without communication: Multiagent schema-based robot navigation. Journal of Robotic Systems 9(3): 351–364

    Article  Google Scholar 

  2. Bacharach, M. (1993). Variable universe games. In Frontiers of game theory (pp. 255–275). Cambridge: MIT Press.

  3. Bacharach M., Bernasconi M. (1997) The variable frame theory of focal points: An experimental study. Games and Economic Behavior 19(1): 1–45

    Article  MATH  MathSciNet  Google Scholar 

  4. Chernoff H., Moses L. (1986) Elementary decision theory. Dover Publications Inc, New York, NY

    Google Scholar 

  5. Crawford V. P, Haller H. (1990) Learning how to cooperate: Optimal play in repeated coordination games. Econometrica 58(3): 571–595

    Article  MATH  MathSciNet  Google Scholar 

  6. Fenster, M., Kraus, S., & Rosenschein J. S. (1998). Coordination without communication: Experimental validation of focal point techniques. In Readings in agents (pp. 380–386). San Francisco, CA: Morgan Kaufmann Publishers Inc.

  7. Gauthier D. (1975) Coordination. Dialogue 14: 195–221

    Article  MathSciNet  Google Scholar 

  8. Gervasi V., Prencipe G. (2004) Coordination without communication: The case of the flocking problem. Discrete Applied Mathematics 144(3): 324–344

    Article  MATH  MathSciNet  Google Scholar 

  9. Goodrich M. A., Schultz A. C. (2007) Human-robot interaction: A survey. Foundations and Trends in Human-Computer Interaction 1(3): 203–275

    Article  MATH  Google Scholar 

  10. Grosz B. J. (2004) Beyond mice and menus. Proceedings of the American Philosophical Society 149(4): 529–543

    Google Scholar 

  11. Harsanyi J.C., Selton R. (1988) A general theory of equilibrium selection in games. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  12. Hirsh R., Graham J., Tyree K., Sierhuis M., Clancey W. J. (2006) Intelligence for human-assistant planetary surface robots. In: Howard A. M., Tunstel E. W. (eds) Intelligence for space robotics. TSI Press, Albuquerque, pp 261–279

    Google Scholar 

  13. Hill, R. W., Jr., Kim, Y., & Gratch, J. (2002). Anticipating where to look: Predicting the movements of mobile agents in complex terrain. In Proceedings of the first international joint conference on autonomous agents and multiagent systems (AAMAS’02) (pp. 821–827). New York, NY: ACM.

  14. Janssen M. C. W. (1998) Focal points. In: Newman P. (eds) The new palgrave of economics and the law. MacMillan, London, pp 150–155

    Google Scholar 

  15. Janssen M. (2001) Rationalizing focal points. Theory and Decision 50(2): 119–148

    Article  MATH  Google Scholar 

  16. Kandori M., Mailath G. J., Rob R. (1993) Learning, mutation, and long run equilibria in games. Econometrica 61(1): 29–56

    Article  MATH  MathSciNet  Google Scholar 

  17. Kraus S. (2001) Strategic negotiation in multiagent environments. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  18. Kraus S., Rosenschein J. S., Fenster M. (2000) Exploiting focal points among alternative solutions: Two approaches. Annals of Mathematics and Artificial Intelligence 28(1–4): 187–258

    Article  MATH  Google Scholar 

  19. Lewis D.K. (1969) Convention: A philosophical study. Harvard University Press, Cambridge

    Google Scholar 

  20. Martin, C., Schreckenghost, D., Bonasso, P., Kortenkamp, D., Milam, T., & Thronesbery, C. (2003). An environment for distributed collaboration among humans and software agents. In AAMAS ’03: Proceedings of the second international joint conference on Autonomous agents and multiagent systems (pp. 1062–1063). New York, NY: ACM.

  21. Mehta, J. (1997). Telling tales: Actors’ accounts of their behavior in coordination games. In Focal points: Coordination, complexity and communication in strategic contexts. Lund, Sweden.

  22. Mehta J., Starmer C., Sugden R. (1994) The nature of salience: An experimental investigation of pure coordination games. American Economic Review 84(3): 658–673

    Google Scholar 

  23. Nash J. (1953) Two-person cooperative games. Econometrica 21(1): 128–140

    Article  MATH  MathSciNet  Google Scholar 

  24. Pederson, L., Kortencamp, D., Wettergreen, D., & Nourbakhsh, I. (2003). A survey of space robotics. In 7th International symposium on artificial intelligence, robotics and automation in space (i-SAIRAS), Nara, Japan.

  25. Ross Quinlan J. (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo

    Google Scholar 

  26. Russell C., DeJong D. V., Forsythe R., Ross T. W. (1990) Selection criteria in coordination games: Some experimental results. American Economic Review 80(1): 218–233

    Google Scholar 

  27. Schelling T. (1963) The strategy of conflict. Oxford University Press, New York

    Google Scholar 

  28. Schermerhorn, P., & Scheutz, M. (2006). Social coordination without communication in multi-agent territory exploration tasks. In Proceedings of the fifth international joint conference on autonomous agents and multi-agent systems (pp. 654–661). Hakodate, Japan.

  29. Schurr, N., Marecki, J., Lewis, J. P., Tambe, M., & Scerri, P. (2005) The defacto system: Training tool for incident commanders. In AAAI-05 (pp. 1555–1562). Pittsburgh.

  30. Sierhuis, M., Bradshaw, J. M., Acquisti, R., Van Hoof, R., & Jeffers, R., (2003). Human–agent teamwork and adjustable autonomy in practice. In 7th International symposium on artificial intelligence, robotics and automation in space (i-SAIRAS), Nara, Japan.

  31. Sugden R. (1995) A theory of focal points. Economic Journal 105(430): 533–550

    Article  Google Scholar 

  32. Van Huyck J. B., Battalio R. C., Beil R. O. (1990) Tacit coordination games, strategic uncertainty, and coordination failure. American Economic Review 80(1): 234–248

    Google Scholar 

  33. Werbos, P. (1974). Beyond regression: New tools for prediction and analysis in the behavioral sciences. PhD thesis, Committee on Applied Mathematics, Harvard University, Cambridge, MA, November.

  34. Wooldridge, M. J. (2009) An Introduction to MultiAgent Systems (2nd ed.). Chichester, West Sussex: Wiley-Blackwell.

  35. Young H. P. (1993) The evolution of conventions. Econometrica 61(1): 57–84

    Article  MATH  MathSciNet  Google Scholar 

  36. Young H. P. (1996) The economics of conventions. Journal of Economic Perspectives 10(2): 105–122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inon Zuckerman.

Additional information

A preliminary version of this article appeared in the Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI 2007).

Inon Zuckerman—The research was done as part of the author’s PhD research in the Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuckerman, I., Kraus, S. & Rosenschein, J.S. Using focal point learning to improve human–machine tacit coordination. Auton Agent Multi-Agent Syst 22, 289–316 (2011). https://doi.org/10.1007/s10458-010-9126-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10458-010-9126-5

Keywords

Navigation