Skip to main content

Advertisement

Log in

Impacts of indigenous agroforestry practices and elevation gradient on ecosystem carbon stocks in smallholdings’ farming system in South-Central Ethiopia

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Agroforestry systems have been recognized for their high carbon (C) capture but vary across agroforestry practices and elevation gradients. Four distinct traditional agroforestry practices namely, dispersed trees in perennial crops, homesteads, boundary plantations, and woodlots, under smallholdings along elevation gradients were assessed. Using stratified random sampling, 540 sample quadrats in three elevations were randomly selected for biomass carbon stocks accounting. In addition, 180 sample quadrats were randomly selected for litters, fine roots, and soil organic carbon assessment. Litters and fine roots carbon stocks were determined based on loss-on-ignition and soil organic carbon (0–30 cm and 30–60 cm) determined using Walkley–Black method. The mean (± sd) biomass carbon stock in the boundary plantation was significantly (p < 0.001) higher by 64, 80, and 91% than woodlots, dispersed trees in perennial crops, and homesteads, respectively. The mean (± sd) ecosystem carbon stock (in biomass, litters, fine roots, and soil) in boundary plantation was significantly (p < 0.001) higher by 71, 64, and 47% than homesteads, dispersed trees, and woodlots, respectively. Litters and fine roots biomass carbon stocks showed insignificant contributions to ecosystem carbon stocks, valued 0.4 and 1.9%, respectively. Ecosystem carbon stock was significantly (p < 0.001) higher at the upper and middle elevations than the lower elevation. Observation on the interactions between elevation gradients and agroforestry practices did not show significant effect. Future attempts in agroforestry designs for tree intensifications and enhanced ecosystem carbon stocks should take into account the various distinct agroforestry practices and elevation gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abebe T, Wiersum KF, Bongers F, Sterck F (2005) Diversity and dynamics in home gardens of Southern Ethiopia. In: Kumar BM, Nair PKR (eds) Tropical home gardens: a time-tested example of sustainable agroforestry. Springer Science, Dordrecht, pp 87–103

    Google Scholar 

  • Abebe T, Wiersum KF, Bongers F (2013) Diversity, composition and density of trees and shrubs in agroforestry homegardens in Southern Ethiopia. Agrofor Syst 87:1283–1293. https://doi.org/10.1007/s10457-013-9637-6

    Article  Google Scholar 

  • Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems: a review. Agric Ecosyst Environ 99:15–27

    Article  CAS  Google Scholar 

  • Asigbaase M, Sjogersten S, Lomax BH, Dawoe E (2019) Tree diversity and its ecological importance value in organic and conventional cocoa agroforests in Ghana. PLoS ONE 14(1):e0210557. https://doi.org/10.1371/journal.pone.0210557

    Article  CAS  Google Scholar 

  • Awe JO, Shepherd KR, Florence RG (1976) Root development in provenances of Eucalyptus camaldulensis Dehn Australian. Forestry 39(3):201–209. https://doi.org/10.1080/00049158.1976.10674152

    Article  Google Scholar 

  • Baah-Acheamfour M, Chang SX, Bork EW, Carlyle C (2017) the potential of agroforestry to reduce atmospheric greenhouse gases in Canada: insight from pairwise comparisons with traditional agriculture, data gaps and future research. The Forestry Chronicle, 93(2)

  • Bahru T, Kidane B, Mulatu Y (2021) Ethnobotany of highland bamboo (Arundinaria alpina (K. Schum.) in Southern Ethiopia. Small-Scale for 20:425–455. https://doi.org/10.1007/s11842-021-09475-8

    Article  Google Scholar 

  • Bajigo A, Tadesse M, Moges Y, Anjulo A (2015) Estimation of carbon stored in agroforestry practices in Gununo Watershed, Wolayitta Zone. Ethiopia J Ecosys Ecograph 5:157. https://doi.org/10.4172/2157-7625.1000157

    Article  Google Scholar 

  • Betemariyam M, Negash M, Worku A (2020) Comparative analysis of carbon stocks in home garden and adjacent coffee based agroforestry systems in Ethiopia. Small-Scale Fore. https://doi.org/10.1007/s11842-020-09439-4

    Article  Google Scholar 

  • Bhatta KP, Grytnes J, Vetaas OR (2018a) Scale sensitivity of the relationship between alpha and gamma diversity along an alpine elevation gradient in central Nepal. J Biogeogr 45:804–814. https://doi.org/10.1111/JBI.13188

    Article  Google Scholar 

  • Bhatta KP, Grytnes J-A, Vetaas OR (2018b) Scale sensitivity of the relationship between alpha and gamma diversity along an alpine elevation gradient in central Nepal. J Biogeogr 00:1–11. https://doi.org/10.1111/jbi.13188

    Article  Google Scholar 

  • Brandt AS, Spring A, Hiebsch C, McCabe JT, Tabogie E, Diro M, Wolde-Michael G, Yntiso G, Shigeta M, Tesfaye S (1997) The ‘“tree against hunger”’ enset-based agricultural systems in Ethiopia. American Association for the Advancement of Science, Washington

    Google Scholar 

  • CSA (2013) Population Projection of Ethiopia for All Regions at Woreda Level from 2014–2032 Addis Ababa pp.

  • Dawoe E, Asante W, Acheampong E, Bosu P (2016) Shade tree diversity and aboveground carbon stocks in Theobroma cacao agroforestry systems: implications for REDD+ implementation in a West African cacao landscape. Carbon Balance Manage 11:17

    Article  Google Scholar 

  • Dimobe K, Tondoh JE, Weber JC, Bayala J, Ouédraogo K, Greenough K (2018) Farmers’ preferred tree species and their potential carbon stocks in southern Burkina Faso: Implications for biocarbon initiatives. PLoS ONE 13(12):e0199488. https://doi.org/10.1371/journal.pone.0199488

    Article  Google Scholar 

  • Dossa EL, Fernands ECM, Reid WS, Ezui K (2008) Above- and-belowground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee Plantation. Agrofor Syst 72:103–115

    Article  Google Scholar 

  • Duguma B, Gockowski J, Bakala J (2001) Smallholder cacao (Theobroma cacao Linn.) cultivation in agroforestry systems of the west and central Africa: challenges and opportunities. Agrofor Syst 51:177–188

    Article  Google Scholar 

  • Duguma LA, Hager H (2010) Woody plants diversity and possession, and their prospects in small-scale tree and shrub growing in agricultural landscapes in central highlands of Ethiopia. Small-Scale for 9(2):153–174. https://doi.org/10.1007/s11842-009-9108-0

    Article  Google Scholar 

  • FDRE (2011) Ethiopia’s climate-resilient green economy. Sustainable development knowledge platform. Report III: 200

  • Fentahun M, Hager H (2010) Integration of indigenous wild woody perennial edible fruit-bearing species in the agricultural landscapes of Amhara region, Ethiopia. Agrofor Syst 78:79–95

    Article  Google Scholar 

  • Grytnesn J-A, McCain C (2007) Elevational trends in biodiversity. University of Bergen and University of California Encyclopedia of Biodiversity, Elsevier Inc, Amsterdam, pp 1–8

    Google Scholar 

  • Jones AC, Hawcroft MK, Haywood JM, Jones A, Guo X, Moore JC (2018) Regional climate impacts of stabilizing global warming at 1.5 K using solar geoengineering. Earth’s Future 6(2):230–251. https://doi.org/10.1002/2017EF000720

    Article  Google Scholar 

  • Kandji, ST, Verchot LV, Mackensen J, Boye A, Van Noordwijk M, Tomich CK, Ong CK, Albrecht A, Palm CA (2006) Opportunities for linking climate change adaptation and mitigation through agroforestry systems. In: Garrity DP, Okono A, Grayson M, Parrott S (Eds.), World Agroforestry into the Future. World Agroforestry Centre, Nairobi, pp. 113–121.

  • Kaonga M, Bayliss-Smith TP (2009) Carbon pools in tree biomass and the soil in improved fallow in eastern Zambia. Agrofor Syst 76:37–51

    Article  Google Scholar 

  • Kirby KR, Potvin C (2007) Variation in carbon storage among tree species: Implications for the management of a small-scale carbon sink project. For Ecol Manage 246(2–3):208–221

    Article  Google Scholar 

  • Kumar BM, Nair PKR (2011) Carbon sequestration potential of agroforestry systems: opportunities and challenges. Springer, Dordrecht p, p 307

    Book  Google Scholar 

  • Kumar JHA (2018) Root carbon sequestration and its efficacy in forestry and agroforestry system: a case of Populus euramericana I-214 cultivated in Mediterranean condition. Not Sci Biol 10(1):68–78. https://doi.org/10.15835/nsb10110181

    Article  CAS  Google Scholar 

  • Kuyah S, Dietz J, Catherine M, Jamnadassa R, Mwangi P, Coe R, Neufeldt H (2012a) Allometric equations for estimating biomass in agricultural landscapes: I. Aboveground biomass. Agric Ecosyst Environ 158:216–224

    Article  Google Scholar 

  • Kuyah S, Dietz J, Muthuria C, Jamnadassa R, Mwangi P, Coe R, Neufeldta H (2012b) Allometric equations for estimating biomass in agricultural landscapes: II. Belowground biomass. Agric Ecosyst Environ 158:225–234

    Article  Google Scholar 

  • Labata MM, Aranico EC, Tabaranza ACE (2012) Carbon stock assessment of three selected agroforestry systems in Bukidnon, Philippines. Adv Environ Sci 4:5–11

    Google Scholar 

  • Lenka E, Ales K, Emil C, Guy L, Hana H (2015) Carbon stock in agroforestry coffee plantations with different shade trees in Villa Rica: Peru. Agrofor Syst 23:14–32

    Google Scholar 

  • Li Q, Zhou D, Jin Y, Wang M, Song Y (2013) Effects of fencing on vegetation and soil restoration in a degraded alkaline grassland in northeast China. J Arid Land [internet]. 6(4):478–487. https://doi.org/10.1007/s40333-013-0207-6

    Article  Google Scholar 

  • Maamoun N (2019) The Kyoto protocol: Empirical evidence of a hidden success. J Environ Econ Manag. https://doi.org/10.1016/j.jeem.2019.04.001

    Article  Google Scholar 

  • Ma Z, Chen HYH, Bork EW, Carlyle CN (2020) Chang SX (2020) Carbon accumulation in agroforestry systems is affected by tree species diversity, age and regional climate: aA global meta-analysis. Global Ecol Biogeogr 00:1–12. https://doi.org/10.1111/geb.13145

    Article  Google Scholar 

  • Magar LK, Kafle G, Aryal P (2020) Assessment of soil organic carbon in tropical agroforests in the Churiya range of Makawanpur Nepal. Int J for Res. https://doi.org/10.1155/2020/8816433

    Article  Google Scholar 

  • Mattsson E, Ostwald M, Nissanka SP, Pushpakumara DKNG (2015) Quantification of carbon stock and tree diversity of home gardens in a dry zone area of Moneragala district, Sri Lanka. Agrofor Syst 89:435–445. https://doi.org/10.1007/s10457-014-9780-8

    Article  Google Scholar 

  • Mellisse B, Descheemaeker K, Giller KE, Abebe T, Gerrie WJ (2018) Are traditional home gardens in southern Ethiopia heading for extinction? Implications for Productivity, plant species richness and food security. Agric Ecosyst Environ 252(2018):1–13

    Article  Google Scholar 

  • Moses SN, Peterson AT, Felix N(2020) Tree diversity patterns above-ground biomass and carbon assessment along an elevational gradient in a tropical forest of the Cameroon volcanic line. Pak J Bot. https://doi.org/10.30848/PJB2020-6(39)

  • Munishamappa M, Austin D, Muddumadappa N (2012) Carbon sequestration in letter and soils of coffee-based agroforestry systems in Central Western Ghats Pf Kodagu district of Karnataka. Environ Ecol 30:985–987

    CAS  Google Scholar 

  • Nair PKR, Tonucci RG, Garcia R, Nair VD (2011) Silvopasture and carbon sequestration with special reference to the Brazilian Savannah (Cerrado). In: Kumar BM, Nair PKR (eds) Carbon sequestration potential of agroforestry systems: opportunities and challenges, advances in agroforestry 8. Springer, Dordrecht, pp 145–162

    Chapter  Google Scholar 

  • Negash M (2007) Trees management and livelihoods in Gedeo’s agroforests. Ethiop Trees Livelihoods 17(2):157–168. https://doi.org/10.1080/14728028.2007.9752591

    Article  Google Scholar 

  • Negash M (2013) The indigenous agroforestry systems of the south-eastern Rift Valley escarpment, Ethiopia: their biodiversity, carbon stocks, and litter fall. The University of Helsinki, Helsinki

    Google Scholar 

  • Negash M, Achalu N (2008) History of indigenous agroforestry in Gedeo, southern Ethiopia, Based on local community interviews: vegetation diversity and structure in the land-use systems. Ethiop J Nat Resour 10(1):31–52

    Google Scholar 

  • Negash M, Kanninen M (2015) Modelling biomass and soil carbon sequestration of indigenous agroforestry systems using CO2FIX approach. Agric, Ecosyst Environ 203:147–155

    Article  Google Scholar 

  • Negash M, Starr M (2015) Biomass and soil carbon stocks of indigenous agroforestry systems on the south-eastern Rift Valley escarpment, Ethiopia. Plant Soil 393:95–107. https://doi.org/10.1007/s11104-015-2469-6

    Article  CAS  Google Scholar 

  • Negash M, Yirdaw E, Luukkanen O (2012) Potential of indigenous multi-strata agroforests for maintaining native floristic diversity in the south-eastern Rift Valley escarpment. Ethiopia Agrofor Syst 85(1):9–28

    Article  Google Scholar 

  • Negash M, Starr M, Kanninen M (2013a) Allometric equations for biomass estimation of Enset (Ensete ventricosum) grown in indigenous agroforestry systems in the Rift Valley escarpment of southeastern Ethiopia. Agrofor Syst 87:571–581. https://doi.org/10.1007/s10457-012-9577-6

    Article  Google Scholar 

  • Negash M, Starr M, Kanninen M, Berhe L (2013b) Allometric equations for estimating aboveground biomass of Coffea arabica L. grown in the Rift Valley escarpment of Ethiopia. Agrofor Syst 87:953–966. https://doi.org/10.1007/s10457-013-9611-3

    Article  Google Scholar 

  • Poschen P (1986) An evaluation of the Acacia albida-based agroforestry practices in the Hararghe highlands of eastern Ethiopia. Agro Sys 4:129–143

    Article  Google Scholar 

  • R-PP (2011) Forest carbon partnership facility (FCPF) readiness preparation proposal (R-PP) country submitting the proposal: Federal Democratic Republic of Ethiopia, pp 1–229

  • Siyum GE, Tassew T (2019) The use of home garden agroforestry systems for climate change mitigation in lowlands of Southern Tigray Northern Ethiopia. ASRJ 2(2):1–13

    Article  Google Scholar 

  • Snowdon P, Raison J, Keith H, Ritson P, Grierson P, Adams M, Montagu K, Bi HQ, Burrows W, Eamus D (2002) Protocol for sampling tree and stand biomass. National Carbon Accounting System, Technical report no. 31. Canberra: Australian Greenhouse Office. p 66

  • Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) (2013) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (IPCC, 2013, Climate Change 2013). The physical science basis. Cambridge University Press, Cambridge, United Kingdom, New York, NY, USA, pp 1535. http://www.ipcc.ch/report/ar5/wg1/

    Google Scholar 

  • SZPED (2004) Socioeconomic profile of Sidama Administrative zone. SZPED (Sidama Zone Planning and Economic Development). Hawassa, Ethiopia

  • Tadesse E, Mesele N, Zebene A (2021) Perennial plants species composition, diversity, and structure in south-central Ethiopia. Agrofor Syst. https://doi.org/10.1007/s10457-021-00659-x

    Article  Google Scholar 

  • Tesfaye MA, Bravo F, Ruiz-Peinado R, Pando V, Bravo-Oviedo A (2016) Impact of changes in land use, species and elevation on soil organic carbon and total nitrogen in Ethiopian central highlands. Geoderma 261:70–79

    Article  CAS  Google Scholar 

  • Unruh JD, Houghton RA, Lefebvre PA (1993) Carbon storage in agroforestry: an estimate for sub-Saharan Africa. Climate Res 3:39–52

    Article  Google Scholar 

  • Woldeyes F (2011) Homegardens and spices of Basketo and Kafa (Southwest Ethiopia): Plant diversity, product valorization, and implications to biodiversity conservation. Ph.D. thesis. Addis Ababa University, Ethiopia.

Download references

Acknowledgements

The authors would like to acknowledge farmers for their unreserved willingness and cooperation during the insistent surveying in their farms’ and households’ interviews. We are also thankful for the Sidama regional state Bureau of agriculture experts for their cooperation in accessing relevant secondary data. We would also like to acknowledge the Hawassa University, Research and Publication Directorate for providing the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyob Tadesse.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Annex I Individual tree and other perennial plants species’ standing biomass carbon (SBC) stocks (Mg C ha−1) in Sidama traditional agroforestry practices, south-central Ethiopia. DTPC dispersed trees in perennial crops, HS homestead, BP boundary plantation, WL woodlots, AGC above ground biomass carbon, BGC belowground biomass carbon, TC total carbon (AGC + BGC).

Species name

SBC stocks in traditional agroforestry practices

DTPC (n = 135)

HS (n = 135)

BP (n = 135)

WL (n = 135)

AGC

BGC

TC

%

AGC

BGC

TC

%

AGC

BGC

TC

%

AGC

BGC

TC

%

Acacia abyssinica Benth

0.0

0.0

0.0

0.0

1.6

0.8

2.4

0.2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Acacia decurence

0.0

0.0

0.0

0.0

4.2

1.9

6.1

0.5

120.5

62.4

182.9

3.4

36.1

13.4

49.5

7.1

Acacia seyal Del

0.0

0.0

0.0

0.0

4.6

2.0

6.7

0.5

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Acacia tortilis

0.0

0.0

0.0

0.0

17.6

6.9

24.5

1.8

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Albizzia gummifera (Gmel.) C.A.Sm

0.0

0.0

0.0

0.0

9.0

3.7

12.7

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Annona senegalensis

12.4

5.0

17.4

1.5

17.0

6.7

23.7

1.8

7.5

3.9

11.4

0.2

0.0

0.0

0.0

0.0

Arundinaria alpina K.Schum

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

25.7

9.8

35.4

5.1

Balanites aegyptiaca

0.0

0.0

0.0

0.0

74.6

26.2

100.8

7.6

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Bersama abyssinicaFres

0.0

0.0

0.0

0.0

9.5

3.9

13.5

1.0

0.0

0.0

0.0

0.0

25.0

9.6

34.6

5.0

Celtis africana Burm. F

0.0

0.0

0.0

0.0

5.4

2.3

7.7

0.6

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Citrus sinensis

8.0

3.4

11.4

1.0

0.0

0.0

0.0

0.0

80.8

28.2

109.0

2.0

0.0

0.0

0.0

0.0

Coffee arabica L

23.4

9.0

32.4

2.7

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Cordia africana Lam

76.7

26.9

103.6

8.7

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Croton macrostachys Hochst. Ex Del

19.7

7.7

27.4

2.3

7.7

3.2

10.9

0.8

106.8

36.5

143.3

2.6

14.1

5.6

19.7

2.8

Cupressus lusitanica Mill

0.0

0.0

0.0

0.0

203.7

66.3

270.0

20.3

107.8

36.8

144.6

2.7

67.2

23.8

91.1

13.1

Discopodium penninervum Hochst

2.4

1.1

3.4

0.3

0.0

0.0

0.0

0.0

5.9

2.5

8.5

0.2

0.0

0.0

0.0

0.0

Dispyros abyssinica (Hiem.) White

0.0

0.0

0.0

0.0

11.1

4.5

15.6

1.2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Dombeya torrida (J.F. Gmel.) Bamps

0.0

0.0

0.0

0.0

2.1

1.0

3.1

0.2

88.0

30.6

118.6

2.2

0.0

0.0

0.0

0.0

Ehretia cymosa Thonn

11.1

4.5

15.6

1.3

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Embelia shimperi Vatke

0.0

0.0

0.0

0.0

13.8

5.5

19.3

1.5

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Enset ventricosum

5.5

20.3

25.8

2.2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Erythrina abyssinica Lam. Ex. Dc

24.5

9.4

33.9

2.9

24.4

9.3

33.7

2.5

325.3

102.1

427.3

7.9

0.0

0.0

0.0

0.0

Erythrina brucei Schweinf

0.0

0.0

0.0

0.0

5.1

2.2

7.4

0.6

112.6

38.4

151.0

2.8

0.0

0.0

0.0

0.0

Eucalyptus camaldulensis Dehn

0.0

0.0

0.0

0.0

51.5

18.6

70.2

5.3

409.6

126.3

535.9

9.9

276.6

87.9

364.5

52.4

Eucalyptus globulus Labill

0.0

0.0

0.0

0.0

41.5

15.2

56.7

4.3

152.1

50.6

202.7

3.7

51.1

18.5

69.6

10.0

Eucela shimperi (A.DC.) Dandy

0.0

0.0

0.0

0.0

6.3

2.7

8.9

0.7

11.4

4.6

16.0

0.3

0.0

0.0

0.0

0.0

Euphorbia abyssinica Gmel

0.0

0.0

0.0

0.0

36.8

13.7

50.4

3.8

7.6

3.2

10.8

0.2

0.0

0.0

0.0

0.0

Euphorbia candelabrum Term. Kotschy

0.0

0.0

0.0

0.0

60.5

21.6

82.1

6.2

322.6

101.3

423.9

7.8

0.0

0.0

0.0

0.0

Fagaropsis angolensis (Engl.) Del

0.0

0.0

0.0

0.0

5.0

2.2

7.2

0.5

28.3

10.7

39.0

0.7

0.0

0.0

0.0

0.0

Ficus spp.

0.0

0.0

0.0

0.0

9.6

3.9

13.5

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Ficus sur Forrsk

378.7

117.5

496.1

41.8

0.0

0.0

0.0

0.0

179.2

58.9

238.1

4.4

0.0

0.0

0.0

0.0

Ficus sycomorus

0.0

0.0

0.0

0.0

8.9

3.7

12.6

0.9

246.8

79.1

325.9

6.0

0.0

0.0

0.0

0.0

Ficus vasta Forrsk

74.5

26.2

100.7

8.5

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Gardenia lutea Fres

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

8.2

3.4

11.6

0.2

0.0

0.0

0.0

0.0

Grevillea robusta A. Cunn. Ex. R. Br

0.0

0.0

0.0

0.0

19.0

7.4

26.4

2.0

241.5

77.6

319.0

5.9

1.0

0.5

1.5

0.2

Hagenia abyssinica (Brucee) J.F. Gmel

0.0

0.0

0.0

0.0

12.2

4.9

17.2

1.3

550.2

165.8

716.0

13.2

21.2

8.2

29.4

4.2

Hypericum roeperianum

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

49.4

17.9

67.4

1.2

0.0

0.0

0.0

0.0

Juniperus procera Hochst. Ex Endl

0.0

0.0

0.0

0.0

2.9

1.3

4.2

0.3

45.0

16.4

61.4

1.1

0.0

0.0

0.0

0.0

Maesa lanceolata Forssk

0.0

0.0

0.0

0.0

5.2

2.2

7.4

0.6

64.1

22.8

86.9

1.6

0.0

0.0

0.0

0.0

Manjifera indica

0.0

0.0

0.0

0.0

14.1

5.6

19.8

1.5

33.0

12.3

45.3

0.8

0.0

0.0

0.0

0.0

Melia azedarach (Hochst) Baker

0.0

0.0

0.0

0.0

7.7

3.2

10.9

0.8

69.6

24.6

94.2

1.7

0.0

0.0

0.0

0.0

Milletia ferruginea (Hochst.) Baker

52.5

19.0

71.5

6.0

0.0

0.0

0.0

0.0

57.8

20.7

78.6

1.4

0.0

0.0

0.0

0.0

Mimusops kummel Bruce ex DC

0.0

0.0

0.0

0.0

9.2

3.8

13.1

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Moringa stenopetala (Bak.) Cuf

0.0

0.0

0.0

0.0

20.3

7.9

28.2

2.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Olea europaea L.ssp. Africana (Mill.) P.S. Green

0.0

0.0

0.0

0.0

2.5

1.1

3.6

0.3

30.5

11.5

42.0

0.8

0.0

0.0

0.0

0.0

Persea americana

35.1

13.1

48.1

4.1

11.9

4.8

16.7

1.3

111.4

38.0

149.3

2.8

0.0

0.0

0.0

0.0

Pittosorum abyssinicum Del

0.0

0.0

0.0

0.0

0.9

0.4

1.3

0.1

59.3

21.2

80.5

1.5

0.0

0.0

0.0

0.0

Podocarpus falcatus (Thunb.) Mirb

0.0

0.0

0.0

0.0

191.4

62.6

254.0

19.1

68.9

24.4

93.3

1.7

0.0

0.0

0.0

0.0

Polyscids fulva (Hiern.) Harms

6.7

2.8

9.5

0.8

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Premna schimperi

0.0

0.0

0.0

0.0

7.9

3.3

11.2

0.8

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Prunus africana (Hook.f.) Kalkm

39.6

14.6

54.2

4.6

4.0

1.7

5.7

0.4

125.9

42.5

168.5

3.1

0.0

0.0

0.0

0.0

Psidium guajava

39.7

14.7

54.4

4.6

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Spathodea campanulata Beauv

0.0

0.0

0.0

0.0

30.7

11.6

42.3

3.2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Syzigeem guineense (Wild.) DC

48.5

17.6

66.1

5.6

0.0

0.0

0.0

0.0

67.9

24.0

92.0

1.7

0.0

0.0

0.0

0.0

Teclea nobilis Del

0.0

0.0

0.0

0.0

1.0

0.5

1.5

0.1

19.0

7.4

26.4

0.5

0.0

0.0

0.0

0.0

Vernonia amygdalina Del

10.1

4.1

14.2

1.2

0.0

0.0

0.0

0.0

24.4

9.4

33.8

0.6

0.0

0.0

0.0

0.0

Vernonia auriculifera Hierm

0.0

0.0

0.0

0.0

4.7

2.1

6.8

0.5

128.8

43.4

172.2

3.2

0.0

0.0

0.0

0.0

Total

868.9

316.7

1185.7

100.0

977.1

352.7

1329.9

100.0

4067.7

1359.6

5427.4

100.0

518.0

177.3

695.3

100.0

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tadesse, E., Negash, M. Impacts of indigenous agroforestry practices and elevation gradient on ecosystem carbon stocks in smallholdings’ farming system in South-Central Ethiopia. Agroforest Syst 97, 13–30 (2023). https://doi.org/10.1007/s10457-022-00781-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-022-00781-4

Keywords

Navigation