Skip to main content

Advertisement

Log in

Plant community composition and functional characteristics define invasion and infestation of termites in cocoa agroforestry systems

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The effects of farm management on non-native species and the structure and function of native communities and ecosystems on crop yield is poorly documented especially in the cocoa agroforestry systems of West Africa. We assessed termite damages, cocoa plantations structural characteristic and local farmer knowledge to refine the critical role of shade trees management on subterranean crops pests and the consequences on marketable yield in five cocoa agroforestry systems. Farmers recognized termites as the most damaging subterranean pests and clearly described the type of damages they cause on cocoa trees and seedlings. Complete shade removal or very heavy shade on very old cocoa trees were responsible of the invasion of termites with negative effect on marketable yield. Some tree species, specifically fruit tree species planted in high proportion or solely may act as termite attractants and reservoirs by facilitating the building of galleries on cocoa trees. Many plant parts from roots to pods are preferred by termites with higher incidence on stems (52%), roots (34%) and young branches (27%). Damages on plant parts varied significantly with shade management. We found that the relationship between yield and the infestation of termites was weak in unshaded systems and very strong under shaded systems. We also found that the sales of agroforestry products significantly contribute to offset yield loss due to termite infestations. We conclude that intermediate shaded cocoa agroforestry systems with a diversity of shade trees will limit the outbreaks of termites. The intermediate shaded systems provide agroforestry products that offset marketable yield loss due to termites with positive impacts on income and the sustainability of cocoa production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akpesse AAM, Kouassi KP, Tano Y, Lepage M (2008) Impact des termites dans les champs paysans de riz et de maïs en savane sub-soudanienne (Booro-Borotou, Côte d’Ivoire). Sci Nat 5(2):121–131

    Google Scholar 

  • Ambele CF, Bisseleua DHB, Ekesi S et al (2018a) Consequences of shade management on the taxonomic patterns and functional diversity of termites (Blattodea: Termitidae) in cocoa agroforestry systems. Ecol Evol 2018(8):11582–11595. https://doi.org/10.1002/ece3.4607

    Article  Google Scholar 

  • Ambele CF, Bisseleua DBH et al (2018b) Soil-dwelling insect pests of tree crops in sub-Saharan Africa, problems and management strategies—a review. J Appl Entomol 2018:001–14

    Google Scholar 

  • Anonymous (2017) Local market prices of fruits and vegetables in Cameroon. Consulted online in February 2017 in AGRIPO site. http://www.agripo.net/shop/2/

  • Bentley JW (1992) Alternatives to pesticides in Central America: applied studies of local knowledge. Cult Agric 12(44):10–13

    Google Scholar 

  • Bhagwat SA, Willis KJ, Birks HJB, Whittaker RJ (2008) Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evol 23(5):261–267

    PubMed  Google Scholar 

  • Bisseleua DHB, Vidal S (2011) Dispersion models and sampling of Cacao Mirid Bug Sahlbergella singularis (Hemiptera: Miridae) on Theobroma cacao in Southern Cameroon. Environ Entomol 40(1):111–119

    CAS  PubMed  Google Scholar 

  • Bisseleua DHB, Missoup AD, Vidal S (2009) Biodiversity conservation, ecosystem functioning, and economic incentives under cocoa agroforestry intensification. Conser Biol 23(5):1176–1184

    CAS  Google Scholar 

  • Bisseleua HBD, Fotio D, Yede Missoup AD, Vidal S (2013) Shade tree diversity, cocoa pest damage, yield compensating inputs and farmers’ net returns in West Africa. PLoS ONE 8(3):1–9

    Google Scholar 

  • Bisseleua DHB, Begoude D, Tonnang H, Vidal S (2017) Ant-mediated ecosystem services and disservices on marketable yield in cocoa agroforestry systems. Agr Ecosyst Environ 247:409–417. https://doi.org/10.1016/j.agee.2017.07.004

    Article  Google Scholar 

  • Bobo KS, Waltert M, Sainge NM, Njokagbor J, Fermon H, Mühlenberg M (2006) From forest to farmland: species richness patterns of trees and understorey plants along a gradient of forest conversion in Southwestern Cameroon. Biodivers Conserv 15(13):4097–4117

    Google Scholar 

  • Bos MM, Steffan-Dewenter I, Tscharntke T (2007) Shade tree management affects fruit abortion, insect pests and pathogens of cacao. Agric Ecosyst Environ 120(2):201–205

    Google Scholar 

  • Cerda R, Deheuvels O, Calvache D, Niehaus L, Saenz Y, Kent J, Vilchez S, Villota A, Martinez C, Somarriba E (2014) Contribution of cocoa agroforestry systems to family income and domestic consumption: looking toward intensification. Agrofor Syst 88(6):957–981

    Google Scholar 

  • Chandler RB, King DI, Raudales R, Trubey R, Chandler C, Arce Chávez VJ (2013) A small-scale land-sparing approach to conserving biological diversity in tropical agricultural landscapes. Conserv Biol 27(4):785–795

    PubMed  Google Scholar 

  • Clough Y, Faust H, Tscharntke T (2009) Cacao boom and bust: sustainability of agroforests and opportunities for biodiversity conservation. Conserv Lett 2(5):197–205

    Google Scholar 

  • Clough Y, Barkmann J, Juhrbandt J, Kessler M, Wanger TC, Anshary A, Erasmi S (2011) Combining high biodiversity with high yields in tropical agroforests. PNAS 108(20):8311–8316

    CAS  PubMed  Google Scholar 

  • Cock MJW, Biesmeijer JC, Cannon RJC, Gerard PJ, Gillespie D, Jimenez JJ, Lavelle PM, Raina SK (2012) The positive contribution of invertebrates to sustainable agriculture and food security. CAB Rev 7(43):1–27

    Google Scholar 

  • Colwell RK, Huston MA (1991) Conceptual framework and research issues for species diversity at the community level. In: Solbrig OT (ed) From genes to ecosystems: a research agenda for diversity. International Union of Biological Sciences, Paris

    Google Scholar 

  • Coulibaly T, Akpesse AAM, Yapi A, Zirihi GN, Kouassi KP (2014) Dégâts des termites dans les pépinières de manguiers du nord de la Côte d’Ivoire Korhogo et essai de lutte par utilisation d’extraits aqueux de plantes. J Anim Plant Sci 22(3):3455–3468

    Google Scholar 

  • Deheuvels O, Avelino J, Somarriba E, Malezieux E (2012) Vegetation structure and productivity in cocoa-based agroforestry systems in Talamanca, Costa Rica. Agric Ecosyst Environ 149:181–188

    Google Scholar 

  • Del Greco A, Oliveira S, Demers N, Weise SF (2012) Rapid biodiversity assessment methodologies, project: biodiversity and cocoa farming: Ghana case, literature review. Bioversity International, Rome, p 83p

    Google Scholar 

  • Duguma B, Gockowski J, Bakala J (2001) Smallholder cacao Theobroma cacao Linn. Cultivation in agroforestry systems of West and Central Africa: challenges and opportunities. Agrofor Syst 51(3):177–188

    Google Scholar 

  • Eba’a AR (2000) TROPFOMS, a decision support model for sustainable management of south Cameroon’s rainforests. Proefschrift Ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, 221p

  • Eggleton P, Bignell DE, Hauser S, Dibog L, Norgrove L, Birang M (2002) Termite diversity across an anthropogenic disturbance gradient in the humid forest zone of West Africa. Agric Ecosyst Environ 90:189–202

    Google Scholar 

  • Foundjem-Tita D, Haese M, Van Damme P, Tchoundjeu Z, Gyau A, Facheux C, Mbosso C (2012) Building long-term relationships between producers and traders groups, in the non-timber forest product sector in Cameroon. Afr J Agric Res 7(2):230–239

    Google Scholar 

  • Franzen M, Mulder MB (2007) Ecological, economic and social perspectives on cocoa production worldwide. Biodivers Conserv 16(13):3835–3849

    Google Scholar 

  • Gabriel D, Sait SM, Kunin WE, Benton TG (2013) Food production vs. biodiversity: comparing organic and conventional agriculture. J Appl Ecol 50(2):355–364

    Google Scholar 

  • Geertsema W, Rossing WAH, Landis DA, Bianchi FJJA, van Rijn PCJ, Schaminée JHJ, Tscharntke T, van der Werf W (2016) Actionable knowledge for ecological intensification of agriculture. Front Ecol Environ 14(4):209–216. https://doi.org/10.1002/fee.1258

    Article  Google Scholar 

  • Gras P, Tscharntke T, Maas B, Tjoa A, Hafsah A, Clough Y (2016) How ants, birds and bats affect crop yield along shade gradients in tropical cacao agroforestry. J Appl Ecol. https://doi.org/10.1111/1365-2664.12625

    Article  Google Scholar 

  • Green RE, Cornell SJ, Scharlemann JPW, Balmford A (2005) Farming and the fate of wild nature. Science 307:550–555

    CAS  PubMed  Google Scholar 

  • Gyau A, Smoot K, Kouame C, Diby L, Kahia J, Ofori D (2014) Farmer attitudes and intentions towards trees in cocoa Theobroma cacao L. farms in Côte d’Ivoire. Agrofor Syst 88:1035

    Google Scholar 

  • Hammer O, Harpe DAT, Ryan PD (2016) PAST: paleontological Statistics software package for education and data analysis. Paleontol Electron 4(1):9

    Google Scholar 

  • Han SH, Tokro GP, Tano Y, Lepage M (1998) Dégâts des termites dans les plantations de palmiers à huile en Côte d’Ivoire: évaluation et méthodes de lutte. Plante, et Recherche Développement en Entomologie 5(2):119–123

    Google Scholar 

  • Harvey CA, Gonzalez J, Somarriba E (2006) Dung beetle and terrestrial mammal diversity in forests, indigenous agroforestry systems and plantain monocultures in Talamanca, Costa Rica. Biodivers Conserv 15(2):555–585

    Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Schmid B (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35

    Google Scholar 

  • Isaac ME, Timmer VR, Quashie-Sam SJ (2007) Shade tree effects in an 8-year-old cocoa agroforestry system: biomass and nutrient diagnosis of Theobroma cacao by vector analysis. Nutr Cycl Agroecosyst 78(2):155–165

    Google Scholar 

  • Ives AR, Klug JL, Gross K (2000) Stability and species richness in complex communities. Ecol Lett 3(5):399–411

    Google Scholar 

  • Jagoret P, Michel-Dounias I, Snoeck D, Ngnogue HT, Malézieux E (2012) Afforestation of savannah with cocoa agroforestry systems: a small-farmer innovation in central Cameroon. Agrofor Syst 86(3):493–504

    Google Scholar 

  • Jha S, Bacon CM, Philpott SM, Méndez VE, Läderach P, Rice RA (2014) Shade coffee: update on a disappearing refuge for biodiversity. Bioscience 64(5):416–428

    Google Scholar 

  • Juhrbandt J (2010) Economic valuation of land-use change—a case study on rainforest conversion and agroforestry intensification in Central Sulawesi, Indonesia. Doctoral thesis, Faculty of Agriculture, Georg-August University, Göttingen

  • Kekeunou S, Messi J, Weise S, Tindo M (2006) Insect pests’ incidence and variations due to forest landscape degradation in the humid forest zone of Southern Cameroon: farmers’ perception and need for adopting an integrated pest management strategy. Afr J Biotechnol 5(7):555–562

    Google Scholar 

  • Logan JWM, Cowie RH, Wood TG (1990) Termites Isoptera control in agriculture and forestry by non-chemical methods: a review. Bull Entomol Res 80(3):309–330

    Google Scholar 

  • Moguel P, Toledo VM (1999) Biodiversity conservation in traditional coffee systems of Mexico. Conserv Biol 13(1):11–21

    Google Scholar 

  • Morton J F (2017) Fruits of warm climates. www.hort.purdue.edu/newcrop/morton/. Consulted online on Febuary 2017

  • Norgrove L, Csuzdi C, Forzi F, Canet M, Gounes J (2009) Shifts in soil faunal community structure in shaded cacao agroforests and consequences for ecosystem function in Central Africa. Trop Ecol 50(1):71–78

    Google Scholar 

  • Nunoo I (2015) Financial viability of cocoa agroforestry systems in Ghana: the case of Sefwi Wiawso district. Thesis Submitted to the Department of Agriculture Economics, Agribusiness and Extension, Kwame Nkrumah University of Science and Technology, 123p

  • Nyeko P, Olubayo FM (2005) Participatory assessment of farmers’ experiences of termites problems in agroforestry in Tororo District. Uganda AgREN 143:15

    Google Scholar 

  • ONCC (2017) Price fluctuation of cocoa beans in Cameroon. http://www.oncc.cm/index.php/fr/. Accessed 23 Feb 2017

  • Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333:1289–1291

    CAS  PubMed  Google Scholar 

  • Poligui RN, Mouaragadja I, Haubruge E, Francis F (2013) La culture du safoutier Dacryodes edulis, [G.Don] HJ Lam [Burseraceae]: enjeux et perspectives de valorisation au Gabon synthèse bibliographique. BiotechNOL Agro, Soc Environ 17(1):131

    Google Scholar 

  • Rice RA, Greenberg R (2000) Cacao cultivation and the conservation of biological diversity. Ambio 29(3):167–173

    Google Scholar 

  • Samways MJ (1984) Community structure of ants Hymenoptera: formicidae in a series of habitats associated with citrus. J Appl Ecol 20:833–847

    Google Scholar 

  • Scherr SJ, McNeely JA (2008) Biodiversity conservation and agricultural sustainability: towards a new paradigm of ‘ecoagriculture’landscapes. Philos Trans R Soc Lond B Biol Sci 363(1491):477–494

    PubMed  Google Scholar 

  • Schroth G, da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac AMN (2004) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, DC

    Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Siebert SF (2002) From shade to sun-grown perennial crops in Sulawesi, Indonesia: implications for biodiversity conservation and soil fertility. Biodivers Conserv 11:1889–1902

    Google Scholar 

  • Sonwa DJ, Nkongmeneck BA, Weise SF, Tchatat M, Adesina AA, Janssens MJJ (2007) Diversity of plants in cocoa agroforests in the humid forest zone of southern Cameroon. Biodivers Conserv 16:2385–2400

    Google Scholar 

  • Steffan-Dewenter I, Kessler M, Barkmann J, Bos M, Buchori D, Erasmi S, Faust H, Gerold G, Glenk K, Gradstein RS, Guhardja E, Harteveld M, Hertel D, Höhn P, Kappas M, Köhler S, Leuschner C, Maertens M, Marggraf R, Migge-Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn GS, Steingrebe A, Tjitrosoedirdjo SS, Tjitrosoemito S, Twele A, Weber R, Woltmann L, Zeller M, Tscharntke T (2007) Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. PNAS 104:4973–4978

    CAS  PubMed  Google Scholar 

  • Tondoh JE, Kouamé FN, Guéi AM, Sey B, Koné AW, Gnessougou N (2015) Ecological changes induced by full-sun cocoa farming in Côte d’Ivoire. Global Ecol Conserv 3:575–595

    Google Scholar 

  • Tra Bi CS (2013). Diversité spécifique et dégâts des termites dans les cacaoyères Theobroma cacao L., 1753 de la région d’Oumé en Côte d’Ivoire. Thèse de doctorat, Université Félix Houphouët-Boigny, 252 p

  • Tra Bi CS, Soro S, Yéboué Nguessan L, Tano Y, Konaté S (2015) Termites impact on different age of Cocoa Theobroma cocoa L. plantations with different fertilizer treatments in semi-deciduous forest zone, Oume, Ivory Coast. Herald J Agric Food Sci Res 4(4):021–027

    Google Scholar 

  • Tscharntke T, Klein A-M, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874

    Google Scholar 

  • Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Vidal S (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43(3):294–309

    Google Scholar 

  • Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Hölscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Velkamp E, Wanger TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes–a review. J Appl Ecol 48(3):619–629

    Google Scholar 

  • Van Bael SA, Philpott SM, Greenberg R, Bichier P, Barber NA, Mooney KA, Gruner DS (2008) Birds as predators in tropical agroforestry systems. Ecology 89(4):928–934

    PubMed  Google Scholar 

  • Van Huis A, Meerman F (1997) Can we make IPM work for resource-poor farmers in sub-Saharan Africa? Inter J Pest Manag 43(4):313–320

    Google Scholar 

  • Venter JG (2015) The response of lepidopteran pests to commercialised Bt maize in South Africa (Doctoral dissertation)

  • Wielgoss A, Tscharntke T, Rumede A, Fiala B, Seidel H, Shahabuddin S, Clough Y (2014) Interaction complexity matters: disentangling services and disservices of ant communities driving yield in tropical agroecosystems. Proc R Soc Lond B, Biol Sci 281(1775):2013–2144

    Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. PNAS 96:1463–1468

    CAS  PubMed  Google Scholar 

  • Zamedjo Y (2011) Gestion décentralisée des ressources forestières au Cameroun: cas de la forêt communale de Djoum. Thèse d’ingénieur des eaux, forêts et chasses, Université de Dschang, 117p

Download references

Acknowledgements

This study is part of the fellowship project (VW-60420894) of BDHB funded by the Volkswagen Foundation. We thank the Volkswagen foundation for the financial assistance provided to the first author for field work and for various analyses. We are particularly grateful to the staff of the Institut de Recherche Agricole pour le Development (IRAD) for their support and hospitality. We are also grateful to Mr Essono of the Department of Plant Biology and Physiology of the University of Yaoundé for his support in plant identification. We also thank the Cameroonian cocoa farmers who made their plantations available to us and for their help and support during field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. H. B. Bisseleua.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djuideu, T.C.L., Bisseleua, D.H.B., Kekeunou, S. et al. Plant community composition and functional characteristics define invasion and infestation of termites in cocoa agroforestry systems. Agroforest Syst 94, 185–201 (2020). https://doi.org/10.1007/s10457-019-00380-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-019-00380-w

Keywords

Navigation