Skip to main content

Advertisement

Log in

Mediterranean cork oak wooded grasslands: synergies and trade-offs between plant diversity, pasture production and soil carbon

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Mediterranean wooded grasslands that emerge from silvopastoral activities are multifunctional systems that result in high biodiversity and offer ecosystem services such as forage production and soil carbon sequestration. During 3 years, ten grazed wooded grassland fields were studied in the Berchidda–Monti long-term observatory, located in NE Sardinia, Italy, with the aim of exploring the synergies and trade-offs between biodiversity and selected ecosystem services. Positions below and outside the canopy of three cork oak trees in each field were randomly selected to compare seasonal pasture production, pasture utilization rate by animals, botanical composition, biodiversity indicators (Shannon index and plant species richness) and soil organic carbon. In autumn, dry matter production of pasture was similar in the two positions; in two winters out of three it was greater below the trees than outside, and in spring it was greater outside than below the trees. While plant species richness and Shannon index were not significantly influenced by the position, the overall wooded grassland plant species richness was 31% higher than that outside of the tree crown. The soil organic carbon content in the 0–40-cm soil layer was also higher below the trees. Our findings highlight that if the main purpose of the wooded grasslands is to provide forage for grazing animals rather than conserving and/or enhancing plant diversity and soil fertility, the presence of trees constrains the overall forage productivity, although the greater forage availability in winter under the trees can contribute to improve the seasonal distribution of forage production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson M, Gorley R, Clarke K (2008) PERMANOVA for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth

    Google Scholar 

  • Bagella S, Caria MC (2011) Vegetation series: a tool for the assessment of grassland ecosystem services in Mediterranean large-scale grazing systems. Fitosociologia 48:47–54

    Google Scholar 

  • Bagella S, Salis L, Marrosu GM, Rossetti I, Fanni S, Caria MC, Roggero PP (2013a) Effects of long-term management practices on grassland plant assemblages in Mediterranean cork oak silvo-pastoral systems. Plant Ecol 214:621–631. https://doi.org/10.1007/s11258-013-0194-x

    Article  Google Scholar 

  • Bagella S, Satta A, Floris I, Caria MC, Rossetti I, Podani J (2013b) Effects of plant community composition and flowering phenology on honeybee foraging in Mediterranean sylvo-pastoral systems. Appl Veg Sci 16:689–697. https://doi.org/10.1111/avsc.12023

    Article  Google Scholar 

  • Bagella S, Sitzia M, Roggero PP (2017) Soil fertilisation contributes to mitigating forest fire hazard associated with Cistus monspeliensis L. (rock rose) shrublands. Int J Wildland Fire 26(2):156–166. https://doi.org/10.1071/wf16114

    Article  Google Scholar 

  • Báldi A (2008) Habitat heterogeneity overrides the species–area relationship. J Biogeogr 35:675–681. https://doi.org/10.1111/j.1365-2699.2007.01825.x

    Article  Google Scholar 

  • Bazzoffi P (2009) Soil erosion tolerance and water runoff control: minimum environmental standards. Reg Environ Change 9:169–179. https://doi.org/10.1007/s10113-008-0046-8

    Article  Google Scholar 

  • Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple ecosystem services. Ecol Lett 12:1394–1404. https://doi.org/10.1111/j.1461-0248.2009.01387.x

    Article  PubMed  Google Scholar 

  • Braun-Blanquet J (1951) Pflanzensoziologie: grundzüge der vegetationskunde. Springer-Verlag

  • Casals P, Romero J, Rusch GM, Ibrahim M (2014) Soil organic C and nutrient contents under trees with different functional characteristics in seasonally dry tropical silvopastures. Plant Soil 374:643–659. https://doi.org/10.1007/s11104-013-1884-9

    Article  CAS  Google Scholar 

  • CEC (Commission of the European Communities) (2002) Towards a thematic strategy for soil protection. In: Communication from the Commission to the Council, the European Parliament, the Economic and Social Committee and the Committee of the Regions. Brussels, p 35

  • Chanteloup P, Bonis A (2013) Functional diversity in root and above-ground traits in a fertile grassland shows a detrimental effect on productivity. Basic Appl Ecol 14:208–216. https://doi.org/10.1016/j.baae.2013.01.002

    Article  Google Scholar 

  • Cosentino SL, Porqueddu C, Copani V, Patanè C, Testa G, Scordia D, Melis R (2014) European grasslands overview: Mediterranean region. Grassland Sci Eur 19:41–56

    Google Scholar 

  • Council of Europe (1992) Council Directive 92/43/EEC, Official Journal L. 206, 22/07/1992, pp 7–50. http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31992L0043&from=EN

  • Craven D, Isbell F, Manning P, Connolly J, Bruelheide H, Ebeling A, Roscher C, van Ruijven J, Weigelt A, Wilsey B, Beierkuhnlein C, de Luca E, Griffin JN, Hautier Y, Hector A, Jentsch A, Kreyling J, Lanta V, Loreau M, Meyer ST, Mori AS, Naeem S, Palmborg C, Wayne Polley H, Reich PB, Schmid B, Siebenkas A, Seabloom E, Thakur MP, Tilman D, Vogel A, Eisenh N (2016) Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philos T Roy Soc B 371:20150277. https://doi.org/10.1098/rstb.2015.0277

    Article  Google Scholar 

  • Daget P, Poissonet J (1971) Une méthode d’analyse phytologique des prairies: critères d’application. Ann Agron 22:5–41

    Google Scholar 

  • De Miguel JM, Acosta-Gallo B, Gómez-Sal B (2013) Understanding Mediterranen pasture dynamics: general tree cover vs specific effects of individual trees. Rangeland Ecol Manag 66:216–223. https://doi.org/10.2111/REM-D-12-00016.1

    Article  Google Scholar 

  • Dufour A, Gadallah F, Wagner HH, Guisan A, Buttler A (2006) Plant species richness and environmental heterogeneity in a mountain landscape: effects of variability and spatial configuration. Ecography 29:573–584. https://doi.org/10.1111/j.0906-7590.2006.04605.x

    Article  Google Scholar 

  • FAO (2017) Sustainably manage forests, combat desertification, halt and reverse land degradation, halt biodiversity loss. http://www.fao.org/sustainable-development-goals/goals/goal-15/en/

  • Fernández-Moya J, San Miguel-Ayanz A, Cañellas I, Gea-Izquierdo G (2011) Variability in Mediterranean annual grassland diversity driven by small-scale changes in fertility and radiation. Plant Ecol 212:865–877. https://doi.org/10.1007/s11258-010-9869-8

    Article  Google Scholar 

  • Frame J (1981) Herbage mass. In: Hodgson J, Baker R, Davies A, Laidlaw A (eds) Sward measurements handbook. The British Grassland Society, Maidenhead, pp 39–67

    Google Scholar 

  • García-Barrios L, Ong CK (2004) Ecological interactions, management lessons and design tools in tropical agroforestry systems. Agrofor Syst 61:221–236. https://doi.org/10.1023/B:AGFO.0000029001.81701.f0

    Article  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. Wiley, New York

    Google Scholar 

  • Gutman M, Seligman NG, Noy-Meir I (1990) Herbage production of Mediterranean grassland under seasonal and yearlong grazing systems. J Range Manag 43:64–68. https://doi.org/10.2307/3899124

    Article  Google Scholar 

  • Haile SG, Nair VD, Nair PKR (2010) Contribution of trees to carbon storage in soils of silvopastoral systems in Florida, USA. Glob Change Biol 16:427–438. https://doi.org/10.1111/j.1365-2486.2009.01981.x

    Article  Google Scholar 

  • Hönigová I, Vačkář D, Lorencová E, Melichar J, Götzl M, Sonderegger G, Oušková V, Hošek M, Chobot K (2012) Survey on grassland ecosystem services. Report of the European Topic Centre on Biological Diversity. Nature Conservation Agency of the Czech Republic, Prague

  • Howlett DS, Moreno G, Mosquera-Losada MR, Nair PKR, Nair VD (2011) Soil carbon storage as influenced by tree cover in the Dehesa cork oak silvopasture of central-western Spain. J Environ Monit 13:1897–1904. https://doi.org/10.1039/c1em10059a

    Article  PubMed  CAS  Google Scholar 

  • Institute SAS (1999) SAS/STAT user’s guide, version 8, vol 2. SAS Institute, Cary

    Google Scholar 

  • Klaus VH, Hölzel N, Boch S, Müller J, Socher S, Prati D, Fischer M, Kleinebecker T (2013) Direct and indirect associations between plant species richness and productivity in grasslands: regional differences preclude simple generalization of productivity-biodiversity relationships. Preslia 85:97–112

    Google Scholar 

  • Kyriazopoulos AP, López-Francos A, Porqueddu C, Sklavou P (2016) Ecosystem services and socio-economic benefits of Mediterranean grasslands. Options 114:13

    Google Scholar 

  • López-Carrasco C, López-Sánchez A, San Miguel A, Roig S (2015) The effect of tree cover on the biomass and diversity of the herbaceous layer in a Mediterranean dehesa. Grass Forage Sci 70:639–650. https://doi.org/10.1111/gfs.12161

    Article  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston M, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808. https://doi.org/10.1126/science.1064088

    Article  PubMed  CAS  Google Scholar 

  • Manning AD, Fischer J, Lindenmayer DB (2006) Scattered trees are keystone structures—implications for conservation. Biol Conserv 132:311–321. https://doi.org/10.1016/j.biocon.2006.04.023

    Article  Google Scholar 

  • McCune B, Grace JB, Urban DL (2002) Analysis of ecological communities. MjM software design, Gleneden Beach

    Google Scholar 

  • MEA (Millenium Ecosystem Assessment) (2005) Ecosystems and human well-being: a framework for assessment. Island Press, Washington

    Google Scholar 

  • Merunková K, Chytrý M (2012) Environmental control of species richness and composition in upland grasslands of the southern Czech Republic. Plant Ecol 213:591–602. https://doi.org/10.1007/s11258-012-0024-6

    Article  Google Scholar 

  • Moreno G (2008) Response of understorey forage to multiple tree effects in Iberian dehesas. Agric Ecosyst Environ 123:239–244. https://doi.org/10.1016/j.agee.2007.04.006

    Article  Google Scholar 

  • Moreno G, Obrador J, García E, Cubera E, Montero M, Pulido F (2005) Consequences of dehesa management on tree-understorey interactions. In: Mosquera-Losada MR, Riguero-Rodriguez A, McAdam J (eds) Silvopastoralism and sustainable land management. CAB International, Oxon, pp 263–265

    Google Scholar 

  • Moreno G, Obrador JJ, García A (2007) Impact of evergreen oaks on soil fertility and crop production in intercropped dehesas. Agric Ecosyst Environ 119:270–280. https://doi.org/10.1016/j.agee.2006.07.013

    Article  CAS  Google Scholar 

  • Moreno G, Bartolome JW, Gea-Izquierdo G, Cañellas I (2013) Overstory-understory relationships. In: Campos P, Huntsinger L, Oviedo JL, Starrs PF, Diaz, M, Standiford RB, Montero G (eds) Mediterranean Oak woodland working landscapes. Dehesas of Spain and Ranchlands of California. Landscape Series, vol 16. Springer, New York, pp 145–179

  • Moreno G, Gonzalez-Bornay G, Pulido F, Lopez-Diaz ML, Bertomeu M, Juárez E, Diaz M (2016) Exploring the causes of high biodiversity of Iberian dehesas: the importance of wood pastures and marginal habitats. Agrofor Syst 90:87–105. https://doi.org/10.1007/s10457-015-9817-7

    Article  Google Scholar 

  • Nieto-Romero M, Oteros-Rozas E, González JA, Martín-López B (2014) Exploring the knowledge landscape of ecosystem services assessments in Mediterranean agroecosystems: insights for future research. Environ Sci Policy 37:121–133. https://doi.org/10.1016/j.envsci.2013.09.003

    Article  Google Scholar 

  • Petersen U, Wrage N, Kohler L, Leuschner C, Isselstein J (2012) Manipulating the species composition of permanent grasslands—a new approach to biodiversity experiments. Basic Appl Ecol 13:1–9. https://doi.org/10.1016/j.baae.2011.10.003

    Article  Google Scholar 

  • Pielou EC (1969) An introduction to mathematical ecology. An introduction to mathematical ecology. Wiley, New York

    Google Scholar 

  • Pilgrim ES, Macleod CJ, Blackwell MS, Bol R, Hogan DV, Chadwick DR, Cardenas L, Misselbrook TH, Haygarth PM, Brazier RE (2010) Interactions among agricultural production and other ecosystem services delivered from European temperate grassland systems. Adv Agron 109:117–154

    Article  Google Scholar 

  • Pulido-Fernández M, Schnabel S, Lavado-Contador JF, Miralles Mellado I, Ortega Pérez R (2013) Soil organic matter of Iberian open woodland rangelands as influenced by vegetation cover and land management. CATENA 109:13–24. https://doi.org/10.1016/j.catena.2013.05.002

    Article  CAS  Google Scholar 

  • Questad EJ, Foster BL (2008) Coexistence through spatio-temporal heterogeneity and species sorting in grassland plant communities. Ecol Lett 11:717–726. https://doi.org/10.1111/j.1461-0248.2008.01186.x

    Article  PubMed  Google Scholar 

  • Ribeiro S, Fernandes JP, Espírito-Santo MD (2014) Diversity and floristic patterns of mediterranean grasslands: the relative influence of environmental and land management factors. Biodivers Conserv 23:2903–2921. https://doi.org/10.1007/s10531-014-0754-y

    Article  Google Scholar 

  • Roggero PP, Bagella S, Farina R (2002) Un Archivio dati di Indici specifici per la valutazione integrata del valore pastorale. Rivista di Agronomia 36:149–156

    Google Scholar 

  • Rolo V, Rivest D, Lorente M, Kattge J, Moreno G (2016) Taxonomic and functional diversity in Mediterranean pastures: insights on the biodiversity–productivity trade-off. J Appl Ecol 53:1575–1584. https://doi.org/10.1111/1365-2664.12685

    Article  Google Scholar 

  • Rossetti I, Bagella S, Cappai C, Caria MC, Lai R, Roggero PP, da Silva PM, Sousa JP, Querner P, Seddaiu G (2015) Isolated cork oak trees affect soil properties and biodiversity in a Mediterranean wooded grassland. Agric Ecosyst Environ 202:203–216. https://doi.org/10.1016/j.agee.2015.01.008

    Article  Google Scholar 

  • Seddaiu G, Porcu G, Ledda L, Roggero PP, Agnelli A, Corti G (2013) Soil organic matter content and composition as influenced by soil management in a semi-arid Mediterranean agro-silvo-pastoral system. Agric Ecosyst Environ 167:1–11. https://doi.org/10.1016/j.agee.2013.01.002

    Article  Google Scholar 

  • Simón N, Montes F, Díaz-Pinés E, Benavides R, Roig S, Rubio A (2013) Spatial distribution of the soil organic carbon pool in a Holm oak dehesa in Spain. Plant Soil 366:537–549. https://doi.org/10.1007/s11104-012-1443-9

    Article  CAS  Google Scholar 

  • Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett 17:866–880. https://doi.org/10.1111/ele.12277

    Article  PubMed  Google Scholar 

  • Takimoto A, Nair VD, Nair PKR (2009) Contribution of trees to soil carbon sequestration under agroforestry systems in the West African Sahel. Agrofor Syst 76:11–25. https://doi.org/10.1007/s10457-008-9179-5

    Article  Google Scholar 

  • Ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Ithaca, NY, USA. www.canoco.com

  • Tilman D, Reich PB, Isbell F (2012) Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. P Natl Acad Sci USA 109:10394–10397. https://doi.org/10.1073/pnas.1208240109

    Article  Google Scholar 

  • USDA (2010) Keys to soil taxonomy, 11th edn. Soil survey staff, United States Department of Agriculture, Natural Resources Conservation Service, Washington, DC, USA. https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_050915.pdf

  • van der Maabel E (1979) Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39:97–114. https://doi.org/10.1007/BF00052021

    Article  Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251

    Article  Google Scholar 

Download references

Acknowledgements

The study was carried out through the AGFORWARD project (Grant Agreement No. 613520), co-funded by the EU, Directorate General for Research & Innovation, within the 7th Framework Programme, Theme 2 - Biotechnologies, Agriculture & Food, and the PASCUUM project (L.R. 7/8/07 n. 7, Regione Autonoma Sardegna). The authors are very grateful to Dr. Maria Carmela Caria, from the University of Sassari for her contribution to CCA data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Pulina.

Appendix

Appendix

See Table 3.

Table 3 List of plant taxa with relative specific index (Is), codex used in the triplot from CCA (Fig. 3) and indication of presence (1) or absence (0) in BT (below the tree) and OT (outside the tree)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seddaiu, G., Bagella, S., Pulina, A. et al. Mediterranean cork oak wooded grasslands: synergies and trade-offs between plant diversity, pasture production and soil carbon. Agroforest Syst 92, 893–908 (2018). https://doi.org/10.1007/s10457-018-0225-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-018-0225-7

Keywords

Navigation