Skip to main content

Advertisement

Log in

Influence of native or exotic trees on soil fertility in decades of silvopastoral system at the Brazilian savannah biome

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Silvopastoral systems (SPSs) are considered a conservationist system by combining forestry species cultivation with domesticated grazing animals, intercropping trees, and pasture in the same area. SPSs are noun for its contribution to improve soil chemical and physical properties, enhance grass nutritional status, provide healthier animal environment, and increase farmers’ options to maximize the use of land. In soil degraded areas, such as those found in Brazilian savannah biome (BSB), the SPSs constitute an alternative to soil recuperation in these areas. Therefore, our aim was to assess soil fertility attributes at different depths on a BSB grown with Brachiaria brizantha cv. Marandu grass, the influence of SPS with native tree zeyheria (Zeyheria tuberculosa) settled in 1984, or with the exotic eucalyptus (Eucalyptus grandis) settled in 1994. The soil water pH, P, Ca, Mg, and K contents, as well as soil base sum and saturation, were found superior mostly at the top layer (0–2 cm) of the eucalyptus site, than for the ipê-felpudo site. This response was correlated to greater soil organic matter and carbon at the eucalyptus site, which demonstrated to have high nutrient cycling rates. Around 50 % of the CEC in both SPSs was occupied by bases, demonstrating that the areas have large potential to absorb applied nutrients. The SPSs have no significant impact on S-SO4 2− or micronutrient availability. The litter composition in eucalyptus site was accountable for the superior results of this SPS, which has shown as a promising choice for land use and conservation in the BSB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggagan NS, Dell B, Malajczuk N (1996) Effects of soil pH on the ectomycorrhizal response of Eucalyptus urophylla seedlings. New Phytol 134(3):539–546. doi:10.1111/j.1469-8137.1996.tb04372.x

    Article  Google Scholar 

  • Albuquerque MB, Santos RC, Lima LM, Melo Filho PA, Nogueira RJMC, Câmara CAG, Ramos AR (2011) Allelopathy, an alternative tool to improve cropping systems. A review. Agron Sustain Dev 31(2):379–395. doi:10.1051/agro/2010031

    Article  Google Scholar 

  • Alves ME (2002) Atributos mineralógicos e eletroquímicos, adsorção e dessorção de sulfato em solos paulistas. ESALQ-USP

  • Anderson GW, Modre RW, Jenkins PJ (1988) The integration of pasture, livestock and widely-space pine in South West Western Australia. Agroforest Syst 6:195–211. doi:10.1007/BF02220122

    Article  Google Scholar 

  • Andrade CMS, Valentim JF, Carneiro JC (2002) Árvores de baginha (Stryphnodendron guianense (Aubl.) Benth.) em ecossitemas de pastagens cultivadas na Amazônia Ocidental. Rev Brasil Zootecn 31:574–582. doi:10.1590/S1516-35982002000300006

    Article  Google Scholar 

  • Bartlett MS (1937) Properties of sufficiency and statistical tests. Proc R Soc A 160:268–282. doi:10.1098/rspa.1937.0109

    Article  Google Scholar 

  • Bedunah DJ, Angerer JP (2012) Rangeland degradation, poverty, and conflict: how can rangeland scientists contribute to effective responses and solutions? Rangel Ecol Manag 65:606–612. doi:10.2111/REM-D-11-00155.1

    Article  Google Scholar 

  • Boval M, Dixon RM (2012) The importance of grasslands for animal production and other functions: a review on man-agement and methodological progress in the tropics. Animal 6:748–762. doi:10.1017/S1751731112000304

    Article  CAS  PubMed  Google Scholar 

  • Brown S, Anderson JM, Woomer PL, Swift MJ, Barrios E (1994) Soil biological processes in tropical ecosystems. In: Woomer PL, Swift MJ (eds) The Biological Management of Tropical Soil Fertility. John Wiley, New Jersey, pp 15–46

    Google Scholar 

  • Burley J, Speedy AW (1999) Investigación agroforestal: perspectivas globales. In: Méndes MR, Sanchez MD (eds) Agroforesteria para la producción animal en América Latina. FAO, Rome, Italy, pp 37–52

    Google Scholar 

  • CFSEMG - Comissão de Fertilidade do Solo do Estado de Minas Gerais (CFSEMG) (1999) Recomendações para o uso de corretivos e fertilizantes em Minas Gerais 5 ed. Lavras

  • Chatzistathis T (2014) Micronutrient Deficiency in Soils and Plants. Bentham eBooks

  • Chen CR, Condron LM, Davis MR, Sherlock RR (2001) Effects of land use change from grassland to forest on soil sulfur and arylsulfatase activity in New Zealand. Aust J Soil Res 39:749–757. doi:10.1071/SR00032

    Article  CAS  Google Scholar 

  • Devendra C (2014) Perspectives on the potential of silvopastoral systems. Agrotechnology 3(1):117. doi:10.4172/2168-9881.1000117

    Google Scholar 

  • Easterwood GW, Sartain JB (1990) Clover residue effectiveness in reducing orthosphate sorption on ferric hydroxide coated soil. Soil Sci Soc Am J 54:1345–1350. doi:10.2136/sssaj1990.03615995005400050024x

    Article  CAS  Google Scholar 

  • EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. 2009. Manual de análises químicas de solos, plantas e fertilizantes. 2 ed. Brasília, Informação Tecnológica

  • Garcia R, Couto L (1997) Sistemas silvipastoris. In Gomide JA (ed) Simpósio Internacional sobre Produção Animal em Pastejo. Viçosa. Anais… Viçosa: UFV. pp 447–471

  • Gershenson A, Barsimantov J (2010) Accounting for carbon in soils. Climate Action Reserve White Paper, EcoShift Consulting LLC

    Google Scholar 

  • Greenwood KL, McKenzie BM (2001) Grazing effects on soil physical properties and the consequences for pastures: a review. Aust J Exp Agric 41:1231–1250. doi:10.1071/EA00102

    Article  Google Scholar 

  • Groenendijk FM, Condron LM, Rijkse WC (2002) Effects of afforestation on organic carbon, nitrogen and sulfur concentrations in New Zealand hill country soils. Geoderma 108:91–100. doi:10.1016/S0016-7061(02)00125-8

    Article  CAS  Google Scholar 

  • Guppy CN, Menzies NW, Moody PW, Blamey FPC (2005) Competitive sorption reactions between phosphorus organic matter in soil: a review. Aust J Soil Res 43:189–202. doi:10.1071/SR04049

    Article  CAS  Google Scholar 

  • Ibrahim M, Guerra L, Casasola F, Neely C. (2010) Importance of silvopastoral systems for mitigation of climate change and harnessing of environmental benefits In: FAO. Grassland carbon sequestration: management, policy and economics. Proceedings of the Workshop on the role of grassland carbon sequestration in the mitigation of climate change. FAO, Rome. Integrated Crop Management 2010; 11:189–196

  • Iyamuremye F, Dick RP, Baham J (1996) Organic amendments and phosphorus dynamics, III: phosphorus speciation. Soil Sc 161:444–451. doi:10.1097/00010694-199607000-00004

    Article  CAS  Google Scholar 

  • Jackson NA, Wallace JS, Ong CK (2000) Tree pruning as a means of controlling water use in an agroforestry system in Kenya. Forest Ecol Manag 126:133–148. doi:10.1016/S0378-1127(99)00096-1

    Article  Google Scholar 

  • Kaur B, Gupta SR, Singh G (2000) Soil carbon, microbial activity and nitrogen availability in agroforestry systems on moderately alkaline soils in northern India. App Soil Ecol 15:283–294. doi:10.1016/S0929-1393(00)00079-2

    Article  Google Scholar 

  • Keuls M (1952) The use of the ‘studentized range’ in connection with an analysis of variance. Euphytica 1:112–122. doi:10.1007/bf01908269

    Article  Google Scholar 

  • Kgosikoma OE, Mojeremane W, Harvie BA (2013) Grazing management systems and their effects on savanna ecosystem dynamics: A review. J Ecol Nat Env 5(6):88–94. doi:10.5897/JENE2013.0364

    Article  Google Scholar 

  • Klink CA, Machado RB (2005) A conservação do Cerrado brasileiro. Megadiversidade, 1(1):148-155. http://www.conservacao.org/publicacoes/files/20_Klink_Machado.pdf

  • Kruse M, Strandberg M, Strandberg B (2000) Ecological effects of allelopathic plants: a review. NERI Technical Report No. 315. Silkeborg, Denmark: National Environmental Research Institute. http://www2.dmu.dk/1_viden/2_publikationer/3_fagrapporter/rapporter/fr315.pdf

  • Lehmann J, Günther D, Da Mota MS, Almeida MP, Zech W, Kaiser K (2001) Inorganic and organic soil phosphorus and sulfur pools in an Amazonian multistrata agroforestry system. Agrof Syst 53:113–124. doi:10.1023/A:1013364201542

    Article  Google Scholar 

  • Lilliefors H (1967) On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J A Stat A 62:399–402. doi:10.1080/01621459.1967.10482916

    Article  Google Scholar 

  • Menezes RSC, Salcedo IH, Elliot ET (2002) Microclimate and nutrient dynamics in a silvipastoral system of semiarid northeastern Brazil. Agrofor Syst 56(1):27–38. doi:10.1023/A:1021172530939

    Article  Google Scholar 

  • Moreira GR, Saliba EOS, Mauricio RM, Sousa LF, Figueiredo MP, Gonçalves LC, Rodriguez NM (2009) Avaliação da Brachiaria brizantha cv. Marandu em sistemas silvipastoris. Arq Bras Med Vet Zootec 61(3):706–713. doi:10.1590/S0102-09352009000300026

    Article  Google Scholar 

  • Nair PKR (1993) An introduction to agroflorestry. Kluwer Academic Publisher, Wetherlands

    Book  Google Scholar 

  • Neves CMN, Silva MLN, Curi N, Macedo RLG, Tokura AM (2004) Estoque de carbono em sistemas agrossilvopastoril, pastagem e eucalipto sob cultivo convencional na região noroeste do estado de Minas Gerais. Ciênc Agrotec 28(5):1038–1046. doi:10.1590/S1413-70542004000500010

    Article  Google Scholar 

  • Nicholls CI, Altieri MA, Salazar AH, Lana MA (2015) Agroecologia e o desenho de sistemas agrícolas resilientes às mudanças climáticas. Agriculturas, caderno para debate n.2

  • Ojima DS, Kittel TGF, Rosswall T, Walker BH (1999) Critical issues for understanding global change effects on terrestrial ecosystems. Ecol Appl 1:316–325. doi:10.2307/1941760

    Article  Google Scholar 

  • Okeke AI, Omaliko CPE (1991) Nutrient accretion to the soil via litterfall and throughfall in Acioa barteri stands at Ozala, Nigeria. Agrof Syst 16:223–229. doi:10.1007/BF00119319

    Article  Google Scholar 

  • Oliveira Neto SN, Paiva HN (2010) Implantação e manejo do componente arbóreo em sistema agrossilvipastoril. In: Oliveira Neto SN, Vale AB, Nacif AP et al. Sistemas agrossilvipastoril Integração lavoura, pecuária e Floresta, Sociedade de Investigações Florestais. pp 15–68

  • Oliveira ME, Leite LL, Franco AC, Castro LHR (2005) Árvores isoladas de duas espécies nativas em pastagem de Brachiaria decumbens Stapf. no cerrado. Past Trop 27:51–56

    Google Scholar 

  • Pagiola S, Agostini P, Gobbi J, De Haan C, Ibrahim M, Murgueitio E, Ramírez E, Rosales M, Ruíz JP (2004) Paying for biodiversity conservation services in agricultural landscapes. Environment Department, No. 96. Washington: World Bank

  • Pavinato PC, Rosolem CA (2008) Disponibilidade de nutrientes no solo - decomposição e liberação de compostos orgânicos de resíduos vegetais. Revista Brasileira de Ciência do Solo 32:911–920. doi:10.1590/S0100-06832008000300001

    Article  CAS  Google Scholar 

  • Perón AJ, Evangelista AR (2004) Degradação de pastagens em regiões de Cerrado. Ciên Agrotec Lavras 28(3):655–661. doi:10.1590/S1413-70542004000300023

    Article  Google Scholar 

  • Pinho RC, Miller RP, Alfaia SS (2012) Agroforestry and the improvement of soil fertility: a view from Amazonia. Appl Environ Soil Sc 11:97–104. doi:10.1155/2012/616383

    Google Scholar 

  • Prado GAF (2012) Atributos do solo, da forrageira e comportamento de vacas leiteiras mestiças manejadas em sistema silvipastoril, em bioma cerrado. Universidade Federal de Minas Gerais

  • Reis GL, Lana AMQ, Maurício RM, Lana RMQ, Machado RM, Borges I, Neto TQ (2010) Influence of trees on soil nutrient pools in a silvopastoral system in the Brazilian Savannah. Plant Soil 329(1–2):185–193. doi:10.1007/s11104-009-0144-5

    Article  CAS  Google Scholar 

  • Rhoades C, Binkley D (1996) Factors influencing decline in soil pH in Hawaiian eucalyptus and albizia plantations. Forest Ecol Manag 80:47–56. doi:10.1016/0378-1127(95)03646-6

    Article  Google Scholar 

  • Rhodes CC (1997) Single tree influences on soil properties in agroforestry: lessons from natural forest and savanna ecosystems. Agrof Systems 35:71–94. doi:10.1007/BF02345330

    Article  Google Scholar 

  • Ribaski J, Varella AC, Flores CA, Mattei VL (2009) Sistemas Silvipastoris no Bioma Pampa. Available at <http://ainfo.cnptia.embrapa.br/digital/bitstream/item/38407/1/RIBASKI-J.-etal-1.pdf> Accessed 20 Dec 2014

  • Salvo L, Hermández J, Ernest O (2010) Distribution of soil organic carbon in different size fractions, under pasture and crop rotations with conventional tillage and no-till systems. Soil Till Res 109:116–122. doi:10.1016/j.still.2010.05.008

    Article  Google Scholar 

  • Sánchez S, Crespo GJ, Hernández M (2009) Litter decomposition in a silvopastoral system of Panicum maximum and Leucaena leucocephala (Lam) de Wit cv. Cunningham. III. Influence of density and diversity of the associated macrofauna. Pastos y Forrajes 32(1):1-1. ISSN 0864-0394

  • Schlesinger WH, Reynolds JE, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG (1990) Biological feedbacks in global desertification. Science 247:1043–1048. doi:10.1126/science.247.4946.1043

    Article  CAS  PubMed  Google Scholar 

  • Sharrow SH, Ismail S (2004) Carbon and nitrogen in agroforests, tree plantatios and pastures in western Oregon, USA. Agrof Syst 60:123–130. doi:10.1023/B:AGFO.0000013267.87896.41

    Article  Google Scholar 

  • Souza IG, Costa ACS, Sambatti JA, Peternele WS, Tormena CA, Montes CR, Clemente CA (2007) Contribuição dos constituintes da fração argila de solos subtropicais à área superficial específica e à capacidade de troca catiônica. Rev Bras Ciênc Solo 31:1355–1365. doi:10.1590/S0100-06832007000600014

    Article  Google Scholar 

  • Vale FR, Guedes GAA, Guilherme LRG, Furtini Neto AE (1997) Fertilidade do Solo: Dinâmica e Disponibilidade de Nutrientes de Plantas. UFLA/FAEPE, Lavras, MG

    Google Scholar 

  • Viana VM, Maurício RM, Matta-Machado R, Pimenta IA (2002) Manejo de la regeneración natural de espécies nativas para la formación de sistemas silvopastoriles em las zonas de bosques secos del sureste de Brasil. Agroforestería de las Américas 9(33–34):48–52

    Google Scholar 

  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sc 37:29–37. doi:10.1097/00010694-193401000-00003

    Article  CAS  Google Scholar 

  • Young A (1997) Agroforestry for Soil Management, 2nd edn. ICRAF and CAB International, Wallingford

    Google Scholar 

  • Yu Z, Jian Z, Wan QY, Fu ZW, Mao SF, Xiao HC (2009) Allelopathic effects of Eucalyptus grandis on Medicago sativa growing in different soil water conditions. Acta Pratac Sin 18(4):81–86 ISSN 1004-5759

    Article  Google Scholar 

  • Zhang C, Fu S (2009) Allelopathic effects of eucalyptus and the establishment of mixed stands of eucalyptus and native species. Forest Ecol Manag 258(7):1391–1396. doi:10.1016/j.foreco.2009.06.045

    Article  Google Scholar 

Download references

Acknowledgments

We thank CNPq and FAPEMIG for their financial support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Maria Quintão Lana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lana, Â.M.Q., Lana, R.M.Q., Lemes, E.M. et al. Influence of native or exotic trees on soil fertility in decades of silvopastoral system at the Brazilian savannah biome. Agroforest Syst 92, 415–424 (2018). https://doi.org/10.1007/s10457-016-9998-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-016-9998-8

Keywords

Navigation