Skip to main content

Advertisement

Log in

The introduction of hybrid walnut trees (Juglans nigra × regia cv. NG23) into cropland reduces soil mineral N content in autumn in southern France

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The introduction of trees in cropland may be a way to improve the mineral nitrogen (N) use efficiency since tree roots can intercept N leached below the crop rooting zone and recycle it as organic N. The aim of this study was to determine soil mineral N (SMN) and total N (STN) contents after 14 years of hybrid walnut tree growth in an agroforestry system. Soil cores were collected and analyses in mid-autumn 2009, in intercropped agroforestry (AF), pure tree (FC) and sole crop control (CC) plots. The SMN was significantly reduced in AF compared to CC (64, 58 and 51 % of reduction at 0.2, 1 and 2 m depth respectively). In the top 1 m of soil, the stock of SMN was 77.7 kg N ha−1 in CC versus 32.8 kg N ha−1 in AF. Trees in AF developed deeper fine roots than in FC, likely involved in the reduction of SMN when compared to CC. Despite this quantitative reduction, trees also progressively modified the form of mineral N in soil by decreasing the percentage of nitrate (NO3 ) in SMN, particularly in FC compared to CC, while AF was intermediate. The STN was not significantly different between AF and CC; but was higher in FC in the top soil, probably due to weeds and superficial tree root biomasses. Our results suggest that the introduction of hybrid walnut trees into cropland may be an efficient practice to reduce the potentially leachable N by winter rainfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen SC, Jose S, Nair PKR, Brecke BJ, Nkedi-Kizza P, Ramsey CL (2004) Safety-net role of tree roots: evidence from a pecan (Carya illinoensis K. Koch)-cotton (Gossypium hirsutum L.) alley cropping system in the southern United States. For Ecol Manag 192:395–407. doi:10.1016/j.foreco.2004.02.009

    Article  Google Scholar 

  • Andrianarisoa KS, Zeller B, Dupouey JL, Dambrine E (2009) Comparing indicators of N status of 50 beech forests (Fagus sylvatica) in Northeastern France. For Ecol Manage 257:2241–2253. doi:10.1016/j.foreco.2009.02.037

    Article  Google Scholar 

  • Andrianarisoa KS, Zeller B, Ranger J, Bienaimé S, Dambrine E (2010) Control of nitrification by tree species in a common garden experiment. Ecosystems 13:1171–1187. doi:10.1007/s10021-010-9390-x

    Article  CAS  Google Scholar 

  • Babbar LI, Zak DR (1994) Nitrogen cycling in coffee agroecosystems: net N mineralization and nitrification in the presence and absence of shade trees. Agric Ecosyst Environ 48:107–113. doi:10.1016/0167-8809(94)90081-7

    Article  CAS  Google Scholar 

  • Beer JW, Bonneman A, Chavez W, Fassbender HW, Imbach AC, Martel I (1990) Modeling agroforestry systems of cacao with Cordia alliodora and Erythrina poeppigiana in Costa Rica. V. Productivity indices, organic matter models and sustainability over ten years. Agrofor Syst 12:229–249. doi:10.1007/BF00137286

    Article  Google Scholar 

  • Cambardella CA, Moorman TB, Jaynes DB, Hatfield JL, Parkin TB, Simpkins WW et al (1999) Water quality in Walnut Creek watershed: nitrate-nitrogen in soils, subsurface drainage water, and shallow groundwater. J Environ Qual 28:25–34. doi:10.2134/jeq1999.00472425002800010003x

    Article  CAS  Google Scholar 

  • Cardinael R, Chevallier T, Barthès BG, Saby NPA, Parent T, Dupraz C, Bernoux M, Chenu C (2015) Impact of alley cropping agroforestry on stocks, forms and spatial distribution of soil organic carbon. A case study in a Mediterranean context. Geoderma 259–260:288–299. doi:10.1016/j.geoderma.2015.06.015

    Article  Google Scholar 

  • Di HJ, Cameron KC, Moore S, Smith NP (1999) Contributions to nitrogen leaching and pasture uptake by autumn-applied dairy effluent and ammonium fertilizer labeled with 15 N isotope. Plant Soil 210:189–198. doi:10.1023/A:1004677902049

    Article  CAS  Google Scholar 

  • Drury CF, Tan CS, Gaynor JD, Oloya TO, Welacky TW (1996) Influence of controlled drainage—sub-irrigation on surface and tile drainage nitrate loss. J Environ Qual 25:317–324. doi:10.2134/jeq1996.00472425002500020016x

    Article  CAS  Google Scholar 

  • Dufour L, Metay A, Talbot G, Dupraz C (2013) Assessing light competition for cereal production in temperate agroforestry systems using experimentation and crop modelling. J Agro Crop Sci 199:217–227. doi:10.1111/jac.12008

    Article  Google Scholar 

  • Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics 6:241–252

    Article  Google Scholar 

  • Dupraz C, Liagre F (2008) Agroforesterie: des arbres et des cultures. Edition France Agricole, Paris

    Google Scholar 

  • Dupraz C, Auclair D, Barthélémy D, Caraglio Y, Sabatier S, Bariteau M, Kreiter S, Tixier Garcin M-S, Maillet J (2000) Programme Intégré de Recherches en Agroforesterie à ResTinclières (PIRAT). INRA Montpellier. http://www.agroof.net/PIRAT/Doc/rapports/pirat1999.pdf. Accessed 31 Aug 2015

  • Falkengren-Grerup U, Brunet J, Diekmann M (1998) Nitrogen mineralization in deciduous forest soils in south Sweden in gradients of soil acidity and deposition. Environ Pollut 102:415–420. doi:10.1016/S0269-7491(98)80062-6

    Article  CAS  Google Scholar 

  • Finer L, Helmisaari H-S, Lõhmus K, Majdi H, Brunner I, Børja I, Eldhuset T, Godbold D, Grebenc T, Konôpka B, Kraigher H, Möttönen MR, Ohashi M, Oleksyn J, Ostonen I, Uri V, Vanguelova E (2007) Variation in fine root biomass of three European tree species: beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.). Plant Biosyst 141:394–405. doi:10.1080/11263500701625897

    Article  Google Scholar 

  • Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–281. doi:10.1038/nature06275

    Article  CAS  PubMed  Google Scholar 

  • Fujimaki R, Tateno R, Hirobe M, Tokuchi N, Takeda H (2004) Fine root mass in relation to soil N supply in a cool temperate forest. Ecol Res 19:559–562. doi:10.1111/j.1440-1703.2004.00669.x

    Article  Google Scholar 

  • Harmand JM, Avila H, Dambrine E, Skiba U, de Miguel S, Renderos RV, Oliver R, Jimenez F, Beer J (2007) Nitrogen dynamics, soil nitrate retention and nitrate water contamination in a Coffea arabicaEucalyptus deglupta agroforestry system in Southern Costa Rica. Biogeochemistry 85:125–139. doi:10.1007/s10533-007-9120-4

    Article  CAS  Google Scholar 

  • Hendricks JJ, Hendrick RL, Wilson CA, Mitchel RJ, Pecot SD, Guo D (2006) Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. J Ecol 94:40–57. doi:10.1111/j.1365-2745.2005.01067.x

    Article  Google Scholar 

  • Idol TW, Pope PE, Ponder F Jr (2000) Fine root dynamics across a chronosequence of upland temperate deciduous forests. For Ecol Manag 127:153–167. doi:10.1016/S0378-1127(99)00127-9

    Article  Google Scholar 

  • Janssen BH (1996) Nitrogen mineralization in relation to C: N ratio and decomposability of organic materials. Plant Soil 181:39–45. doi:10.1007/BF00011290

    Article  CAS  Google Scholar 

  • Jeffery S, Gardi C, Jones A, Montanarella L, Marmo L, Miko L, Ritz K, Peres G, Römbke J, van der Putten WH (eds) (2010) European atlas of soil biodiversity. European Commission, Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Jose S, Gillespie AR, Seifert JR, Mengel DB, Pope PE (2000) Defining competition vectors in a temperate alley cropping system in the midwestern USA: 3. Competition for nitrogen and litter decomposition dynamics. Agrofor Syst 48:61–77. doi:10.1023/A:1006241406462

    Article  Google Scholar 

  • Jose S, Gillespie AR, Seifert JR, Pope PE (2001) Comparison of minirhizotron and soil core methods for quantifying root biomass in a temperate alley cropping system. Agrofor Syst 52:161–168. doi:10.1023/A:1010667921970

    Article  Google Scholar 

  • Keyes MR, Grier CC (1981) Above- and belowground net production in 40-year-old Douglas-fir stands on low and high productivity sites. Can J For Res 11:599–605. doi:10.1139/x81-082

    Article  Google Scholar 

  • Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621

    Article  Google Scholar 

  • Lee EH, Tingey DT, Beedlow PA, Johnson MG, Burdick CA (2007) Relating fine root biomass to soil and climate conditions in the Pacific Northwest. For Ecol Manag 242:195–208. doi:10.1016/j.foreco.2007.01.033

    Article  Google Scholar 

  • Meier IC, Leuschner C (2008) Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob Change Biol 14:2081–2095. doi:10.1111/j.1365-2486.2008.01634.x

    Article  Google Scholar 

  • Mulia R, Dupraz C (2006) Unusual fine root distributions of two deciduous tree species in southern France: what consequences for modelling of tree root dynamics? Plant Soil 281:71–85. doi:10.1007/s11104-005-3770-6

    Article  CAS  Google Scholar 

  • Mulia R, Dupraz C, Van Noordwijk M (2010) Reconciling root plasticity and architectural ground rules in tree root growth models with voxel automata. Plant Soil 337:77–92. doi:10.1007/s11104-010-0502-3

    Article  CAS  Google Scholar 

  • Owen JS, Wang MK, Wang CH, King HB, Sun HL (2003) Net N mineralization and nitrification rates in a forested ecosystem in northeastern Taiwan. For Ecol Manag 176:519–530. doi:10.1016/S0378-1127(02)00225-6

    Article  Google Scholar 

  • Palma JHN, Graves AR, Bunce RGH, Burgess PJ, Filippi R, De Keesman KJ, Van Keulen H, Liagre F, Mayus M, Moreno G, Reisner Y, Herzog F (2007) Modelling environmental benefits of silvoarable agroforestry in Europe. Agric Ecosyst Environ 119:320–334. doi:10.1016/j.agee.2006.07.021

    Article  Google Scholar 

  • Persson T, Wiren A (1995) Nitrogen mineralization and potential nitrification at different depths in acid forest soils. Plant Soil 168(169):55–65. doi:10.1007/BF00029313

    Article  Google Scholar 

  • Rosell RA, Gasparoni JC, Galantini JA (2001) Soil organic matter evaluation. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Assessment methods for soil carbon. CRC Press, Lewis Publishers, Boca Raton, pp 311–322

    Google Scholar 

  • Shen JP, Zhang LM, Zhu YG, Zhang JB, He JZ (2008) Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environ Microbiol 10:1601–1611. doi:10.1111/j.1462-2920.2008.01578.x

    Article  CAS  PubMed  Google Scholar 

  • Smil V (1999) Nitrogen in crop production. Global Biogeochem Cy 13:647–662. doi:10.1029/1999GB900015

    Article  CAS  Google Scholar 

  • Talbot G, Roux S, Graves A, Dupraz C, Marrou H, Wery J (2014) Relative yield decomposition: a method for understanding the behaviour of complex crop models. Environ Model Softw 51:136–148. doi:10.1016/j.envsoft.2013.09.017

    Article  Google Scholar 

  • Udawatta RP, Krstansky JJ, Henderson GS, Garrett HE (2002) Agroforestry practices, runoff, and nutrient loss: a paired watershed comparison. J Environ Qual 31:1214–1225. doi:10.2134/jeq2002.1214

    Article  CAS  PubMed  Google Scholar 

  • Van Noordwijk M, Lusiana B (1998) WaNuLCAS, a model of water, nutrient and light capture in agroforestry systems. Agrofor Syst 43:217–242. doi:10.1023/A:1026417120254

    Article  Google Scholar 

  • Van Noordwijk M, Brouwer G, Meijboom F, Do Rosario G, Oliveira M, Bengough AG (2000) Trench profile techniques and core break methods. In: Smit AL, Bengough AG, Engels C, Van Noordwijk M, Pellerin S, Van De Geijn SC (eds) Roots methods. Springer, Berlin, pp 212–231

    Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition: plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397. doi:10.1104/pp.010331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WJ, Smith CJ, Chalk PM, Chen DL (2001) Evaluating chemical and physical indices of nitrogen mineralization capacity with an unequivocal reference. Soil Sci Soc Am J 65:368–376. doi:10.2136/sssaj2001.652368x

    Article  CAS  Google Scholar 

  • Wösten JHM, Lilly A, Nesmes A, Le Bas C (1999) Development and use of a database of hydraulic properties of European soils. Geoderma 90:169–185. doi:10.1016/S0016-7061(98)00132-3

    Article  Google Scholar 

  • WRB IWG (2006) World reference base for soil resources, 2nd edn. World Soil Resources Reports No. 103. FAO, Rome

Download references

Acknowledgments

We acknowledge “L’Agence de l’eau: Rhône Méditerranée Corse” for the financial support of this study. The Restinclières walnut experimental plot was established and maintained thanks to a grant by the PIRAT program funded by the “Département de l’Hérault”, (the owner of the Restinclières estate). We sincerely thank J-F. Bourdoncle, P Parra and C Enard for conducting the difficult field soil coring activities. We also thank the two anonymous reviewers for their meaningful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasaina Sitraka Andrianarisoa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrianarisoa, K.S., Dufour, L., Bienaimé, S. et al. The introduction of hybrid walnut trees (Juglans nigra × regia cv. NG23) into cropland reduces soil mineral N content in autumn in southern France. Agroforest Syst 90, 193–205 (2016). https://doi.org/10.1007/s10457-015-9845-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-015-9845-3

Keywords

Navigation