Skip to main content

Advertisement

Log in

Carbon storage in the different compartments of two systems of shrubs of the southwestern Iberian Peninsula

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Quantifying carbon and biomass is relevant information needed in the fight against global warming. Since in Mediterranean ecosystems the agroforestry surface is very large, estimating carbon stocks and their distribution in the different compartments (above ground biomass, root, litter and soil) of these ecosystems is very important. In this work, fixed carbon was quantified in the two most abundant systems of thermophilic shrub of southwestern Iberian Peninsula: Rockroseland (Cistus ladanifer L.) and Broomland (Retama sphaerocarpa L.). Biomass was estimated through regression functions from morphology parameters. The results showed that the distribution of carbon among the compartments depends on the species. It was estimated that 34.7 Mg ha−1 of carbon retained in the C. ladanifer system, distributed among the different reservoirs. The shrub system of R. sphaerocarpa stores 24.3 Mg ha−1 of carbon. The carbon stored in biomass was differently also distributed among its components in each species. In C. ladanifer, carbon in above ground biomass is more than 85 % of the total biomass, and 15 % corresponds to carbon in root. However, in R. sphaerocarpa carbon stored in roots goes up to 48 %. These values show that it is important to quantify the carbon stored in all the components of the ecosystem (including the root), and show how important it is to maintain shrubs as reservoirs of carbon in Mediterranean agroforestry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asner GP (2004) Biophysical remote sensing signatures of arid and semi-arid regions. In: Ustin SL (ed) Remote sensing for natural resources management and environmental monitoring: manual of remote sensing. Wiley, New York, pp 53–109

    Google Scholar 

  • Bravo F (2007) El papel de los bosques españoles en la mitigación del cambio climático. Fundación Gas Natural, Barcelona

    Google Scholar 

  • Buras A, Wucherer W, Zerbe S, Noviskiy Z, Muchitdinov N, Shimshikov B, Zverev N, Schmidt S, Wilmking M, Thevs N (2012) Allometric variability of Haloxylon species in Central Asia. For Ecol Manag 274:1–9

    Article  Google Scholar 

  • Cabezas J, Escudero JC (1989) Estudio termométrico de la provincia de Badajoz. Dirección General de Investigación, Extensión y Capacitación Agrarias, Badajoz

    Google Scholar 

  • Cairns MA, Winjum JK, Phillips DL, Kolchugina TP, Vinson TS (1997) Terrestrial carbon dynamics: case studies in the former Soviet Union, the conterminous United States, Mexico and Brazil. Mitig Adapt Strat Glob Change 1:363–383

    Article  Google Scholar 

  • Canellas I, San Miguel A (2000) Biomass of root and shoot sistemas of Quercus coccifera shrublands in Eastern Spain. Ann For Sci 57:803–810

    Article  Google Scholar 

  • Devesa JA (1995) Vegetación y Flora de Extremadura. Universitas Editorial, Badajoz

    Google Scholar 

  • Fan JW, Zhong HP, Harris W, Yu GR, Wang SQ, Hu ZM, Yue YZ (2008) Carbon storage in the grasslands of China based on field measurements of above-and below-ground biomass. Clim Change 86:375–396

    Article  CAS  Google Scholar 

  • Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001) Changes in forerst biomass carbon storage in China between 1949 and 1998. Sci 292(5525):2320–2322

    Article  CAS  Google Scholar 

  • Figueiredo T (1990) Aplicaçao da equaçao universal de perda de solo na estimativa da erosao potencial: o caso do Parque Natural de Montesinho. ESAB, Bragança

    Google Scholar 

  • Fonseca W, Alice FE, Rey-Benayas JM (2012) Carbon accumulation in aboveground and belowground biomass and soil of different age native forest plantations in the humid tropical lowlands of Costa Rica. New For 43:197–211

    Article  Google Scholar 

  • Gayoso J, Schlegel B (2001) Proyectos Forestales para la mitigación de gases efecto invernadero Una tarea pendiente. Ambient Desarro 17(1):41–49

    Google Scholar 

  • Haase P, Pugnaire FI, Fernández EM, Puigdefábregas J, Clark SC, Incoll LD (1996) Investigation of rooting depth in the semiarid shrub Retama sphaerocarpa (L.) Boiss. by labelling of ground water with a chemical tracer. J Hydrol 177:23–31

    Article  CAS  Google Scholar 

  • Hoffman A, Kummerow J (1978) Root studies in the Chilean matorral. Oecologia 32:57–69

    Article  Google Scholar 

  • ISO (1994) Organic and total carbon after dry combustion. In: Oostra S, Majdi H, Olsson M (eds) Environment soil quality. ISO/DIS 10694, Geneva

    Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci 94:7362–7366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kimble JM, Lal R, Follett RR (2002) Agricultural practices and policy options for carbon sequestration: what we know and where we need to go. In: Kimbel JM, Lal R, Follett RF (eds) Agricultural practices and policies for carbon sequestration in soil. Lewis Publishers, New York, p 512

    Google Scholar 

  • Kowalski AS, Loustau D, Berbigier P, Manca G, Tedeschi V, Borghetti M, Valentini R, Kolari P, Berninger F, Rannik E, Hari P, Rayment M, Mencuccini M, Moncrieff J, Grace J (2004) Paired comparisons of carbon exchange between undisturbed and regenerating stands in four managed forests in Europe. Glob Change Biol 10:1707–1723

    Article  Google Scholar 

  • Kummerow J, Kraus D, Jow W (1977) Root systems of chaparral shrubs. Oecologia 29:163–177

    Article  Google Scholar 

  • Lamlom SH, Savidge RA (2003) A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenerg 25:381–388

    Article  CAS  Google Scholar 

  • Lopera G, Gutierrez V (2000) Viabilidad técnica y económica de la utilización de plantaciones de Pinus patula como sumideros de Carbono. Tesis Ingeniero Forestal, Universidad Nacional de Colombia, Medellín

    Google Scholar 

  • MacClaran MP, Moore-Kucera J, Martens DA, Van Haren J, Marsh SE (2008) Soil carbon and nitrogen in relation to shrub size and death in a semi-arid grassland. Geoderma 145:60–68

    Article  Google Scholar 

  • MacDiken K (1997) A Guide to monitoring carbon storage in forestry and agroforestry projects. Winrock International, Arlington

    Google Scholar 

  • Martínez García F, Merino J (1987) Evolución estacional de la biomasa subterránea del matorral del P.N. de Doñana. VIII Bienal Real Sociedad Esp History. Natural 47:263–570

    Google Scholar 

  • McNaughton SJ, Banyikawa FF, McNaughton MM (1998) Root biomass and productivity in a grazing ecosystem: the Serengeti. Ecology 79:587–592

    Article  Google Scholar 

  • Metcalfe DB, Kunin WE (2006) The effects of plant density upon pollination success, reproductive effort and fruit parasitism in Cistus ladanifer L. (Cistaceae). Plant Ecol 185:41–47

    Article  Google Scholar 

  • Miller PC (1977) Root-shoot biomass ratios in shrubs in southern California and Chile. Madroño 24(4):215–223

    Google Scholar 

  • Mokany K, Raison J, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Glob Change Biol 12:84–96

    Article  Google Scholar 

  • Nadelhoffer KJ, Raich JW (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73:1139–1147

    Article  Google Scholar 

  • Navarro RM, Blanco P (2006) Estimation of above-ground biomass in shrubland ecosystems of southern Spain. Invest Agrar Sist Recur For 15(2):197–207

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Page AL et al (eds) Methods of soil analysis, Part 2, 2nd agronomy. American Society of Agronomy Inc, Madison, pp 961–1010

    Google Scholar 

  • Nilsson MC, Wardle DA (2005) Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front Ecol Environ 3:421–428

    Article  Google Scholar 

  • Ordóñez JAB, de Jong BHJ, García-Oliva F, Aviña FL, Pérez JV, Guerrero G, Martínez R, Masera O (2008) Carbon content in vegetation, litter, and oil under 10 different land-use and land-cover classes in the Central Highland of Michoacan, Mexico. For Ecol Manage 255:2074–2084

    Article  Google Scholar 

  • Ortíz E (1997) Costa Rican secondary forest: an economic option for joint implementation initiatives to reduce atmospheric CO2. Draft paper presented for inclusion in the Beijer Seminar in Punta Leona, Mexico

    Google Scholar 

  • Pastor-López A, Martín J (1995) Ecuaciones de fitomasa para Pinus halepensis en repoblaciones de la provincia de Alicante. Stud Oecol 12:79–88

    Google Scholar 

  • Patón D, Azocar P, Tovar J (1998) Growth and productivity in forage biomass in relation to the age assessed by dendrochronology in the evergreen shrub Cistus ladanifer L using different regression models. J Arid Environ 38:221–235

    Article  Google Scholar 

  • Ragland KW, Aerts DJ, Baker AJ (1991) Properties of wood for combustion analysis. Bioresour Technol 37:161–168

    Article  CAS  Google Scholar 

  • Rolo V, Moreno G (2012) Interspecific competition induces asymmetrical rooting profile adjustments in shrub-encroached open oak woodlands. Trees 26:997–1006

    Article  Google Scholar 

  • Rovira P, Romanya J, Rubio A, Roca N, Alloza JA, Vallejo R (2007) Estimación del carbono orgánico en los suelos peninsulares españoles. In: Bravo F (ed) El papel de los bosques españoles en la mitigación del cambio climático. Fundación Gas Natural, Barcelona, pp 197–292

    Google Scholar 

  • Rozas MA (1993) Estudio edafológico de la comarca de Jerez de los Caballeros (Spain) PhD thesis. Universidad de Extremadura. Badajoz

  • Ruiz de la Torre J (1990) Memoria General del Mapa Forestal de España a escala 1:200000. Ministerio de Agricultura, Pesca y Alimentación, Madrid

    Google Scholar 

  • Ruíz-Peinado R, Moreno R, Juárez E, Montero G, Roig S (2013) The contribution of two common shrub species to aboveground and belowground carbon stock in Iberian dehesas. J Arid Environ 91:22–30

    Article  Google Scholar 

  • San Miguel A, Roig S, Cañellas I (2008) Fruticeticultura. Gestión de arbustedos y matorrales. In: Serrada R, Montero G, Reque J (eds) Compendio de selvicultura aplicada en España. Arco/Libros, Madrid, pp 877–907

    Google Scholar 

  • Schlesinger WH (1977) Carbon balance in terrestrial detritus. Ann Rev Ecol Syst 8:51–81

    Article  CAS  Google Scholar 

  • Sierra CA, Harmon ME, Moreno FH, Orrego SA, del Valle JI (2007) Spatial and temporal variability of net ecosystem production in a tropical forest: testing the hypothesis of a significant carbon sink. Glob Change Biol 13:838–853

    Article  Google Scholar 

  • Silva JS, Rego FC (2004) Root to shoot relationships in Mediterranean woody plants from Central Portugal. Biologia 59(Suppl 13):109–115

    Google Scholar 

  • Simões MP (2002) Dinâmica de biomassa (carbono) e nutrientes em Cistus salvifolius L. e Cistus ladanifer L. Influência nas características do solo. PhD thesis. Universidade de Évora, Évora

  • Simões MP, Madeira M, Gazarini L (2009) Ability of Cistus L shrubs to promote soil rehabilitation in extensive oak woodlands of Mediterranean areas. Plant Soil 323:249–265

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. Freeman, New York, p 887

    Google Scholar 

  • Titlyanova AA, Romanova IP, Kosykh NP (1999) Pattern and process in above-ground and below-ground components of grassland ecosystems. J Veg Sci 10:307–320

    Article  Google Scholar 

  • UNFCC (2007) United nations framework convention on climate change, 13th conference of parties to the UNFCCC.

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for etermining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci 63:251–263

    Article  Google Scholar 

  • Yamaguchi DK (1991) A simple method for cross-dating increment core from living trees. Con. J. For Res 21:414–416

    Google Scholar 

Download references

Acknowledgments

We thank the Consejería de Economía, Comercio e Innovación de la Junta de Extremadura for their assistance in funding this work (GRU09038) as part of the “Plan for the Consolidation of and Support to Research Groups”. Special thanks to Manuel Mota (statistician) for valuable statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Alías.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alías, J.C., García, M., Sosa, T. et al. Carbon storage in the different compartments of two systems of shrubs of the southwestern Iberian Peninsula. Agroforest Syst 89, 575–585 (2015). https://doi.org/10.1007/s10457-015-9792-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-015-9792-z

Keywords

Navigation