Skip to main content

Advertisement

Log in

Carbon stocks, tree diversity, and the role of organic certification in different cocoa production systems in Alto Beni, Bolivia

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

This study compares aboveground and belowground carbon stocks and tree diversity in different cocoa cultivation systems in Bolivia: monoculture, simple agroforestry, and successional agroforestry, as well as fallow as a control. Since diversified, agroforestry-based cultivation systems are often considered important for sustainable development, we also evaluated the links between carbon stocks and tree diversity, as well as the role of organic certification in transitioning from monoculture to agroforestry. Biomass, tree diversity, and soil physiochemical parameters were sampled in 15 plots measuring 48 × 48 m. Semi-structured interviews with 52 cocoa farmers were used to evaluate the role of organic certification and farmers’ organizations (e.g., cocoa cooperatives) in promoting tree diversity. Total carbon stocks in simple agroforestry systems (128.4 ± 20 Mg ha−1) were similar to those on fallow plots (125.2 ± 10 Mg ha−1). Successional agroforestry systems had the highest carbon stocks (143.7 ± 5.3 Mg ha−1). Monocultures stored significantly less carbon than all other systems (86.3 ± 4.0 Mg ha−1, posterior probability P(Diff > 0) of 0.000–0.006). Among shade tree species, Schizolobium amazonicum, Centrolobium ochroxylum, and Anadenanthera sp. accumulated the most biomass. High-value timber species (S. amazonicum, C. ochroxylum, Amburana cearensis, and Swietenia macrophylla) accounted for 22.0 % of shade tree biomass. The Shannon index and tree species richness were highest in successional agroforestry systems. Cocoa plots on certified organic farms displayed significantly higher tree species richness than plots on non-certified farms. Thus, expanding the coverage of organic farmers’ organizations may be an effective strategy for fostering transitions from monoculture to agroforestry systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abruzzese R, Stoian D, Somarriba E (2005) Estrategias de vida de productores emprendedores y desarrollo empresarial rural en el Alto Beni, Bolivia. Agroforestería en las Américas 43–44:28–32

    Google Scholar 

  • Andrade H, Ibrahim M (2003) Cómo monitorear el secuestro de carbono en los sistemas silvopastoriles? Agroforestería en las Américas 10:109–116

    Google Scholar 

  • Andrade H, Segura M, Somarriba E, Villalobos M (2008) Valoración biofísica y financiera de la fijación de carbono por uso del suelo en fincas cacaoteras indígenas de Talamanca, Costa Rica. Agroforestería en las Américas 46:45–50

    Google Scholar 

  • Asare R (2006) A review on cocoa agroforestry as a means for biodiversity conservation. Paper presented at the World Cocoa Foundation Partnership Conference, May 2006, Brussels

  • Bernaards C, Jennrich R (2012) GPArotation: GPA Factor Rotation. R package Version: 2012.3-1. Available from: http://cran.r-project.org/web/packages/GPArotation. Accessed 15 Dec 2012

  • Bhagwat SA, Willis KJ, Birks HJ, Whittaker RJ (2008) Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evol 23(5):261–267

    Article  PubMed  Google Scholar 

  • Brown S (1997) Estimating biomass and biomass change of tropical forests. A primer. FAO Forestry Paper no. 134

  • Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11

    Article  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    Article  CAS  PubMed  Google Scholar 

  • Clough Y, Barkmann J, Juhrbandt J, Kessler M, Wanger TC, Anshary A, Buchori D, Cicuzza D, Darras K, Putra DD, Erasmi S, Pitopang R, Schmidt C, Schulze CH, Seidel D, Steffan-Dewenter I, Stenchly K, Vidal S, Weist M, Wielgoss AC, Tscharntke T (2011) Combining high biodiversity with high yields in tropical agroforests. PNAS 108(20):8311–8316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Moraes JFL, Volkoff B, Cerri Carlos C, Bernoux M (1996) Soil properties under Amazon forest and changes due to pasture installation in Rondonia, Brazil. Geoderma 70:63–81

    Article  Google Scholar 

  • Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob Chang Biol 17:1658–1670

    Article  Google Scholar 

  • Elbers J (2002) Agrarkolonisation im Alto Beni Landschafts- und politisch-ökologische Entwicklungsforschung in einem Kolonisationsgebiet in den Tropen Boliviens. Dissertation, University of Duesseldorf

  • European Union organic regulation (2008) Verordnung (EG) Nr. 834/2007. http://www.bioaktuell.ch/de/bioregelwerk.html. Accessed 17 Jan 2013

  • FAO (2011) Organic agriculture and climate change mitigation—a report of the round table on organic agriculture and climate change, Rome

  • Gattinger A, Muller A, Haeni M, Skinner C, Fliessbach A, Buchmann N, Mäder P, Stolze M, Smit P, Scialabba N, Niggli U (2012) Enhanced top soil carbon stocks under organic farming. PNAS 109(44):18226–18231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gelman A, Hill J, Yajima M (2012) Why we (usually) don’t have to worry about multiple comparisons. J Res Educ Eff 5:189–211

    Google Scholar 

  • Haeger A (2012) The effects of management and plant diversity on carbon storage in coffee agroforestry systems in Costa Rica. Agrofor Syst 86(2):159–174

    Article  Google Scholar 

  • Haggar J, Barrios M, Bolaños M, Merlo M, Moranga P, Munguia R, Ponce A, Romero S, Soto G, Staver C, de MF Virginio E (2011) Coffee agroecosystem performance under full sun, shade, conventional and organic management regimes in Central America. Agrofor Syst 82:285–301

    Article  Google Scholar 

  • Hairiah K, Sitompul SM, van Noordwijk M, Palm C (2001) Methods for sampling carbon stocks above and below ground. ASB Lecture Note 4B, Bogor

  • Henry M, Tittonell P, Manlay RJ, Bernoux M, Albrecht A, Vanlauwe B (2009) Biodiversity, carbon stocks and sequestration potential in aboveground biomass in smallholder farming systems of western Kenya. Agric Ecosyst Environ 129:238–252

    Article  CAS  Google Scholar 

  • ICRAF (2005) Tree diversity analysis—a manual and software for common statistical methods for ecological and biodiversity studies, Nairobi

  • ICRAF (2011) Wood Density Database. World Agroforestry Centre, http://wwww.orldagroforestrycentreorg/sea/Products/AFDbases/WD. Accessed 15 Nov 2011

  • Ifejika Speranza C (2010) Resilient adaptation to climate change in African agriculture. DIE Studies, Bonn

    Google Scholar 

  • IFOAM (2005) The IFOAM Norms for organic production and processing. http://www.ifoam.org/about_ifoam/standards/norms/norm_documents_library/Norms_ENG_V4_20090113.pdf. Accessed 2 Dec 2011

  • IPCC (2003) Good practice guidance for land use, land-use change and forestry. IPCC National Greenhouse Gas Inventories Programme, Hayama

  • IPCC (2007) Climate Change 2007—synthesis report, Geneva

  • Jacobi J, Schneider M, Bottazzi P, Pillco M, Calizaya P, Rist S (2013) Agroecosystem resilience and farmers’ perceptions of climate change impacts in cocoa farms in Alto Beni, Bolivia. Renw Agr Food Syst, online first

  • Koepke U (2008) Organic agriculture in the tropics and subtropics. Tropical series, 1, Köster, Berlin

  • Leifeld J, Fuhrer J (2010) Organic farming and soil carbon sequestration: what do we really know about the benefits? Ambio 39:585–599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Milz J (2010) Producción de Naranja (Cirtucus sinensis) en sistemas agroforestales sucesionales en Alto Beni, Bolivia—Estudio de caso. In: Beck S (ed) Biodiversidad y Ecología en Bolivia. Instituto de Ecología, Universidad Mayor de San Andrés (UMSA), La Paz, pp 324–340

    Google Scholar 

  • Miranda M, Somarriba E (2005) Evaluación agronómica de las plantaciones de cacao injertado de productores de la Central de Cooperativas El Ceibo, Alto Beni, Bolivia. Agroforestería en las Américas 43–44:62–66

    Google Scholar 

  • Mueller-Lindenlauf M (2009) Organic agriculture and carbon sequestration. Possibilities and constraints for the consideration of organic agriculture within carbon accounting systems. FAO, Rome

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeyer CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nair PKR (2011) Carbon sequestration studies in agroforestry systems: a reality-check. Agrofor Syst 86:1–11

    Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2009a) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23

    Article  CAS  Google Scholar 

  • Nair PKR, Nair VD, Mohan KB, Haile S (2009b) Soil carbon sequestration in tropical agroforestry systems: a feasibility appraisal. Environ Sci Policy 12:1099–1111

    Article  CAS  Google Scholar 

  • Niggli U, Schmid H, Fliessbach A (2007) Organic farming and climate change. Briefing prepared by the Research Institute of Organic Agriculture FiBL, Frick, Switzerland, for the International Trade Centre ITC, Geneva

  • Noponen MRA, Edward-Jones G, Haggar JP, Soto G, Attarzadeh N, Healey JR (2012) Greenhouse gas emissions in coffee grown with differing input levels under conventional and organic management. Agric Ecosyst Environ 151:6–15

    Article  CAS  Google Scholar 

  • Orozco L, Somarriba E (2005) Árboles maderables en fincas de cacao orgánico del Alto Beni, Bolivia. Agroforestería en las Américas 34–44:46–53

    Google Scholar 

  • Ortiz M, Somarriba E (2005) Sombra y especies arbóreas en cacaotales del Alto Beni, Bolivia. Agroforestería en las Américas 43–44:54–61

    Google Scholar 

  • Patton MQ (2002) Qualitative evaluation and research methods. Sage, Beverly Hills

    Google Scholar 

  • Pearson T, Walker S, Brown S (2005) Sourcebook for land use, land-use change and forestry projects. World Bank BioCarbon Fund and Winrock International, Washington

    Google Scholar 

  • Philpott SM, Bichier P, Rice R, Greenberg R (2007) Field-testing ecological and economic benefits of coffee certification programs. Conserv Biol 21(4):975–985

    Article  PubMed  Google Scholar 

  • Pinto W (2011) Clasificación orientada a objetos con imágenes de alta resolución para la determinación de la cobertura y uso del suelo en la región de Alto Beni, Bolivia, Master’s thesis, Universidad Mayor de San Simón, Cochabamba

  • Quelca A, Bentes-Gama M, Pastrana A, Ochoa R (2005) Percepciones y valoración del sistema sucesional multiestrato de los productores cacaoteros del Alto Beni, Bolivia. Agroforestería en las Américas 43–44:77–80

    Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. Vienna

  • Ramirez OA, Somarriba E (2000) Risk and returns of diversified cropping systems under nonnormal, cross-, and autocorrelated commodity price structures. J Agric Res Econ 25(2):653–668

    Google Scholar 

  • Revelle W (2012) psych: procedures for psychological, psychometric, and personality research. R package Version 1.2.8. Available from: http://cran.r-project.org/web/packages/psych. Accessed 15 Dec 2012

  • Rice R, Greenberg A (2000) Cacao cultivation and the conservation of biological diversity. Ambio 29(3):167–173

    Google Scholar 

  • Roncal-García S, Soto-Pinto L, Castellanos-Albores J, Ramírez-Marcial N, de Jong B (2008) Sistemas Agroforestales y Almacenamiento de Carbono en Comunidades Indígenas de Chiapas. Mexico. Interciencia 33(3):7

    Google Scholar 

  • Santos S, Miranda I, Tourinho M (2004) Biomass estimation of agroforestry systems of the Juba river floodplain in Cametá, Pará. Acta Amazonica 34(1):1–8

    Article  Google Scholar 

  • Schroth G, Sinclair FL (eds) (2003) Trees, crops and soil fertility: concepts and research methods. CABI, Bangor

    Google Scholar 

  • Schulz J (2011) Imitating natural ecosystems through successional agroforestry for the regeneration of degraded lands—a case study of smallholder agriculture in northeastern Brazil. In: Smith J et al (eds) Agroforestry as a tool for landscape restoration. Nova Science Publishers, New York, pp 3–17

    Google Scholar 

  • Schulz B, Becker B, Götsch E (1994) Indigenous knowledge in a “modern” sustainable agroforestry system—a case study from Brazil. Agrofor Syst 25:59–69

    Article  Google Scholar 

  • Scialabba NE-H, Mueller-Lindenlauf M (2010) Organic agriculture and climate change. Renew Agric Food Syst 25(2):158–169

    Article  Google Scholar 

  • Segura M, Kanninen M, Suárez D (2006) Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agrofor Syst 68:143–150

    Article  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Somarriba E, Beer J (2011) Productivity of Theobroma cacao agroforestry systems with timber or legume service shade trees. Agrofor Syst 81:109–121

    Article  Google Scholar 

  • Somarriba E, Trujillo L (2005) El proyecto Modernización de la cacaocultura orgánica del Alto Beni, Bolivia. Agroforestería en las Américas 43–44:6–14

    Google Scholar 

  • Somarriba E, Andrade HJ, Segura M, Villalobos M (2008) Cómo fijar carbono atmosférico, certificarlo y venderlo para complementar los ingresos de productores indígenas en Costa Rica? Agroforestería en las Américas 46:81–88

    Google Scholar 

  • Soto-Pinto L, Anzueto M, Mendoza J, Jimenez Ferrer G, de Jong B (2010) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor Syst 78:39–51

    Article  Google Scholar 

  • Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Hölscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wanger TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes—a review. J Appl Ecol 48:619–629

    Article  Google Scholar 

  • UNFCCC (2009) Approved simplified baseline and monitoring methodology for small-scale agroforestry—afforestation and reforestation project activities under the clean development mechanism. CDM—Executive Board AR-AMS0004, Version 02

  • van Reeuwijk LP (2002) Procedures for soil analysis, 6th edn. Technical Paper 9, International Soil Reference and Information Centre, Wageningen

  • Vieira DLM, Holl KD, Peneireiro FM (2009) Agro-successional restoration as a strategy to facilitate tropical forest recovery. Restor Ecol 17(4):451–459

    Article  Google Scholar 

  • Yana W, Weinert H (2001) Técnicas de sistemas agroforestales multiestrato—manual práctico. PIAF-El Ceibo, La Paz

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank DITSL for financing a pre-study, the NCCR NorthSouth program (Research Project 13) for supervision, AVINA Foundation for initial funding, KFPE Bern for financing an Echange Universitaire project with students from Bolivia, FiBL (Andreas Gattinger and Franco Weibel), the Planet Action program, DigitalGlobe, the Centre for Development and Environment (Anne Zimmermann, Anu Lannen), ECOTOP (Joachim Milz), the Facultad de Agronomía (Fanny Suxo) and Instituto de Ecología UMSA La Paz (Renate Seidel and Miguel Limachi), the foundation PIAF-El Ceibo (Vladimiro Mendieta and Ernesto Huanca), and two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Jacobi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobi, J., Andres, C., Schneider, M. et al. Carbon stocks, tree diversity, and the role of organic certification in different cocoa production systems in Alto Beni, Bolivia. Agroforest Syst 88, 1117–1132 (2014). https://doi.org/10.1007/s10457-013-9643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-013-9643-8

Keywords

Navigation