Skip to main content

Advertisement

Log in

Carbon stocks in coffee agroforests and mixed dry tropical forests in the western highlands of Guatemala

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Tree removal in Latin American coffee agroforestry systems has been widespread due to complex and interacting factors that include fluctuating international markets, government-supported agricultural policies, and climate change. Despite shade tree removal and land conversion risks, there is currently no widespread policy incentive encouraging the maintenance of shade trees for the benefit of carbon sequestration. In facilitation of such incentives, an understanding of the capacity of coffee agroforests to store carbon relative to tropical forests must be developed. Drawing on ecological inventories conducted in 2007 and 2010 in the Lake Atitlán region of Guatemala, this research examines the carbon pools of smallholder coffee agroforests (CAFs) as they compare to a mixed dry forest (MDF) system. Data from 61 plots, covering a total area of 2.24 ha, was used to assess the aboveground, coarse root, and soil carbon reservoirs of the two land-use systems. Results of this research demonstrate the total carbon stocks of CAFs to range from 74.0 to 259.0 Megagrams (Mg) C ha−1 with a mean of 127.6 ± 6.6 (SE) Mg C ha¹. The average carbon stocks of CAFs was significantly lower than estimated for the MDF (198.7 ± 32.1 Mg C ha−1); however, individual tree and soil pools were not significantly different suggesting that agroforest shade trees play an important role in facilitating carbon sequestration and soil conservation. This research demonstrates the need for conservation-based initiatives which recognize the carbon sequestration benefits of coffee agroforests alongside natural forest systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. There is no record of the exact number of smallholders in the study region. To our knowledge, all smallholders in the region grow coffee under shade trees, though the extent and magnitude of shade cover varies.

  2. Total area is an approximation based on aerial photographs and observations made during fieldwork.

  3. The ASTER image was distributed by the Land Processes Distributed Active Archive Center (LP DAAC), located at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center (lpdaac.usgs.gov).

  4. NDVI is the Normalized Difference Vegetation Index, calculated as (NIR − VIS)/(NIR + VIS) where NIR and VIS stand for the spectral reflectance measurements acquired in the near-infrared and visible (red) regions, respectively. Values close to one indicate higher densities of ‘greenness’ than values close to zero (Mather 2004).

  5. Coffee tree density and the presence of low-lying coffee branches in the CAFs complicated the creation of circles, and without removing or breaking branches extensively, accurate plot boundaries were not easily attained.

  6. All values are presented as the mean ± 1 standard error.

  7. Carbon stock estimates by Ávila et al. (2001) include shade tree biomass, coffee tree biomass, and soil organic carbon from 0 to 25 cm depth. While soil sampling in our CAFs was less than that of Ávila et al. (2001), our average total carbon stocks are similar.

  8. Soil sampling depths in Indonesia, Togo, and Mexico equaled 30 cm (van Noordwijk et al. 2002), 40 cm (Dossa et al. 2008), and 30 cm (Soto-Pinto et al. 2010), respectively.

References

  • ANACAFÉ (Asociación Nacional del Café de Guatemala) (2008) Green book: Guatemalan coffees. ANACAFÉ, Guatemala City. http://www.guatemalancoffees.com/index.php/greenbook. Accessed 12 December 2011

  • Ávalos-Sartio B, Blackman A (2010) Agroforestry price supports as a conservation tool: Mexican shade coffee. Agrofor Syst 78:169–183

    Article  Google Scholar 

  • Ávila G, Jiménez F, Beer J, Gómez M, Ibrahim M (2001) Almacenamiento, fijación de carbono y valoración de servicios ambientales en sistemas agroforestales en Costa Rica. Agroforestería en las Américas 8(30):32–35

    Google Scholar 

  • Bacon C (2005) Confronting the coffee crisis: can fair trade, organic, and specialty coffees reduce small-scale farmer vulnerability in Northern Nicaragua? World Dev 33(3):497–511

    Article  Google Scholar 

  • Balloffet NM, Martin AS (2007) Governance trends in protected areas: experiences from the parks in peril program in Latin America and the Caribbean. Parks in peril innovations in conservation series. The Nature Conservancy, Arlington

    Google Scholar 

  • Bandeira FP, Martorell C, Meave JA, Caballero J (2005) The role of rustic coffee plantations in the conservation of wild tree diversity in the Chinantec region of Mexico. Biodivers Conserv 14:1225–1240

    Article  Google Scholar 

  • Bennett E, Peterson G, Gordon L (2009) Understanding relationships among multiple ecosystem services. Ecol Lett 12:1–11

    Article  Google Scholar 

  • Bhagwat SA, Willis KJ, Birks HJB, Whittaker RJ (2008) Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evol 23(5):261–267

    Article  PubMed  Google Scholar 

  • Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper No. 134. Rome, Italy

  • Brown S (2002a) Measuring carbon in forests: current status and future challenges. Environ Pollut 116(3):363–372

    Article  PubMed  CAS  Google Scholar 

  • Brown S (2002b) Measuring, monitoring, and verification of carbon benefits for forest-based projects. Philos Trans R Soc Lond A 360:1669–1783

    Article  CAS  Google Scholar 

  • Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11

    Article  Google Scholar 

  • Castellanos E, Bonilla C, Quilo A (2007) Cuantificación de Carbono Capturado por Bosques Comunales y Municipales de Cinco Municipios en los Departamentos de San Marcos y Huehuetenango. Proyecto AGROCYT No. 051-2004. Centro de Estudios Ambientales y de Biodiversidad, y Universidad del Valle de Guatemala, Guatemala City

  • Castellanos E, Quilo A, Pons D (2010) Estudio de Línea Base de Carbono en Cafetales. Centro de Estudios Ambientales y de Biodiversidad, y Universidad del Valle de Guatemala, Guatemala City

  • Castellanos E, Quilo A, Amboage RM (2011) Validation of the Methodology used by Universidad del Valle de Guatemala for the Estimation of the Carbon Content in Forests and Agroforestry Systems of Guatemala. Centro de Estudios Ambientales y de Biodiversidad, y Universidad del Valle de Guatemala y CARE, Guatemala City

  • CEAB (Centro de Estudios Ambientales y de Biodiversidad) (unpublished results) Plan de Manejo 2003–2007: Parque Regional Municipal Chuiraxamoló, Santa Clara La Laguna, Sololá

  • Chave J, Condit R, Lao S, Caspersen JP, Foster RB, Hubbell SP (2003) Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. J Ecol 91:240–252

    Article  Google Scholar 

  • Condit R (1998) Tropical forest census plots. Springer, Berlin

    Google Scholar 

  • Dossa EL, Fernandes ECM, Reid WS (2008) Above- and below-ground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation. Agrofor Syst 72:103–115

    Article  Google Scholar 

  • Eakin H, Tucker C, Castellanos E (2005) Market shocks and climate variability: the coffee crisis in Mexico, Guatemala, and Honduras. Mt Res Devel 25(4):304–309

    Article  Google Scholar 

  • Eakin H, Tucker C, Castellanos E (2006) Responding to the coffee crisis: a pilot study of farmers’ adaptations in Mexico, Guatemala and Honduras. Geogr J 172(2):156–171

    Article  Google Scholar 

  • Ellis EA, Baerenklau KA, Marcos-Martínez R, Chávez E (2010) Land use/land cover change dynamics and drivers in a low-grade marginal coffee growing region of Veracruz, Mexico. Agrofor Syst 80:61–84

    Article  Google Scholar 

  • Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436(4):686–688

    Article  PubMed  CAS  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2002) LocClim: FAO local climate estimator. CD-ROM, Version 1.0. Information Division, FAO, Rome, Italy

  • FAO (Food and Agriculture Organization of the United Nations) (2006) Guidelines for soil description, 4th edn. Information Division, FAO, Rome

    Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2009) FAOSTAT: production\crops. http://faostat.fao.org/site/567/default.aspx#ancor. Accessed 12 December 2011

  • Fearnside PM, Barbosa RI (1998) Soil carbon changes from conversion of forest to pasture in Brazilian Amazonia. For Ecol Manag 108:147–166

    Article  Google Scholar 

  • Greenberg R, Bichier P, Sterling J (1997) Bird populations in rustic and planted shade coffee plantations of Eastern Chiapas, Mexico. Biotropica 29(4):501–514

    Article  Google Scholar 

  • Harmand JM, Hergoualc’h K, de Miguel S, Dzib B, Siles P, Vaast P (2006) Carbon sequestration in coffee agroforestry plantations of Central America. In: Proceedings of the 21st international conference on coffee science (ASIC). CIRAD, Montpelier, France, 11–15 September 2006

  • IADB (Inter-American Development Bank), USAID, World Bank (2002) Managing the competitive transition of the coffee sector in Central America. Discussion document prepared for the regional workshop “the coffee crisis and its impact in Central America: situation and lines of action. Antigua, Guatemala, April 3–5, 2002. http://www.iadb.org/regions/re2/coffeeworkshop/document_all.pdf. Accessed 12 December 2011

  • IFRI (International Forestry Resources and Institutions) Research Program (2007) Field manual, version 13. Center for the Study of Institutions, Population, and Environmental Change, Indiana University, Bloomington, Indiana. http://sitemaker.umich.edu/ifri/files/ifri_manual_v13_rev8-08_compressed.pdf. Accessed 12 December 2011

  • IPCC (Intergovernmental Panel on Climate Change) (2000) Special report on land use, land-use change and forestry. Cambridge University Press, Cambridge

    Google Scholar 

  • Jha S, Dick CW (2008) Shade coffee farms promote genetic diversity of native trees. Current Biol 18(24):1126–1128

    Article  Google Scholar 

  • Jha S, Vandermeer J (2010) Impacts of coffee agroforestry management on tropical bee communities. Biol Conserv 143:1423–1431

    Article  Google Scholar 

  • Jha S, Bacon CM, Philpott SM, Rice RA, Méndez VE, Läderach P (2011) A review of ecosystem services, farmer livelihoods, and value chains in shade coffee agroecosystems. In: Campbell, WB, López Ortíz S (eds) Integrating agriculture, conservation, and ecotourism: examples from the fields. Springer, Dordrecht, pp 141–208

  • Ketterings QM, Coe R, van Noordwijk M, Ambagau Y, Palm CA (2001) Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For Ecol Manag 146:199–209

    Article  Google Scholar 

  • Kirby KR, Potvin C (2007) Variation in carbon storage among tree species: implications for the management of a small-scale carbon sink project. For Ecol Manag 246:208–221

    Article  Google Scholar 

  • Lewin B, Giovannucci D, Varangis P (2004) Coffee markets: new paradigms in global supply and demand. World Bank, Washington, DC

    Google Scholar 

  • MAGA (Ministerio de Agricultura, Ganadería y Alimentación) (2002) Atlas Temático de la República de Guatemala. Instituto Agropecuario Nacional, Ministerio de Agricultura de Guatemala, Guatemala

  • Magrin G, Gay García C, Cruz Choque D, Giménez JC, Moreno AR, Nagy GJ, Nobre C, Villamizar A (2007) Latin America. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate Change 2007: impacts, adaptation and vulnerability. contribution of working group ii to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 581–615

    Google Scholar 

  • Malhi Y, Aragão LEOC, Metcalfe DB, Paiva R, Quesada CA, Almeida S, Anderson L, Brando P, Chambers JQ, da Costa ACK, Hutyra LR, Oliveira P, Patino S, Pyle EH, Robertson AK, Teixeira LM (2009) Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Global Chang Biol 15:1255–1274

    Article  Google Scholar 

  • Mather PM (2004) Computer processing of remotely-sensed images: an introduction, 3rd edn. John Wiley & Sons, Chichester

    Google Scholar 

  • Moguel P, Toledo VM (1999) Biodiversity conservation in traditional coffee systems of Mexico. Conserv Biol 13:11–21

    Article  Google Scholar 

  • Nair PK, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutri Soil Sci 172:10–23

    Article  CAS  Google Scholar 

  • Nakakaawa C, Aune J, Vedeld P (2009) Changes in carbon stocks and tree diversity in agro-ecosystems in south western Uganda: what role for carbon sequestration payments? New For 40(1):19–44

    Article  Google Scholar 

  • Neelin JD, Münnich M, Su H, Meyerson JE, Holloway CE (2006) Tropical drying trends in global warming models and observations. Proc Natl Acad Sci 103:6110–6115

    Article  PubMed  CAS  Google Scholar 

  • Nestel D (1995) Coffee in Mexico: international market, agricultural landscape and ecology. Ecol Econ 15:165–178

    Article  Google Scholar 

  • Oxfam (2001) Bitter coffee: how the poor are paying for the slump in coffee prices. http://www.maketradefair.com/en/assets/english/BitterCoffee.pdf. Accessed 20 December 2011

  • Pearson T, Walker S, Brown S (2005) Sourcebook for land use, land-use change and forestry projects. Winrock International and the BioCarbon Fund of the World Bank, Washington

    Google Scholar 

  • Penman J, Gytarsky T, Hiraishi T, Krug T, Kruger D, Pipatti R, Buendia L, Miwa K, Ngara T, Tanabe K, Wagner F (2003) Good practice guidance for land use, land-use change and forestry. IPCC National Greenhouse Gas Inventories Programme and Institute for Global Environmental Strategies, Kanagawa, Japan. http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_contents.html. Accessed 12 December 2011

  • Perfecto I, Vandermeer J (2002) Quality of agroecological matrix in a tropical montane landscape: ants in coffee plantations in Southern Mexico. Conserv Biol 16(1):174–182

    Article  Google Scholar 

  • Perfecto I, Rice RA, Greenberg R, van der Voort ME (1996) Shade coffee: a disappearing refuge for biodiversity. Bioscience 46(8):598–608

    Article  Google Scholar 

  • Perfecto I, Armbrecht I, Philpott SM, Soto-Pinto L, Dietsch TV (2007) Shaded coffee and the stability of rainforest margins in Latin America. In: Tscharntke T, Leuschner C, Zeller M, Guhadja E, Bidin A (eds) The stability of tropical rainforest margins, linking ecological, economic, and social constraints of land use and conservation. Springer, New York, pp 225–261

    Google Scholar 

  • Perfecto I, Vandermeer J, Wright A (2009) Nature’s matrix: linking agriculture, conservation and food sovereignty. Earthscan, London

    Google Scholar 

  • Philpott SM, Arendt WJ, Armbrecht I, Bichier P, Diestch TV, Gordon C, Greenberg R, Perfecto I, Reynoso-Santos R, Soto-Pinto L, Tejeda-Cruz C, Williams-Linera G, Valenzuela J, Zolotoff JM (2008) Biodiversity loss in Latin American coffee landscapes: review of the evidence on ants, birds, and trees. Conserv Biol 22(5):1093–1105

    Article  PubMed  Google Scholar 

  • Ponte S (2002) The ‘latte revolution’? Regulation, markets and consumption in the global coffee chain. World Dev 30(7):1099–1122

    Article  Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Global Chang Biol 6:317–328

    Article  Google Scholar 

  • Powers JS (2004) Changes in soil carbon and nitrogen after contrasting land-use transitions in Northeastern Costa Rica. Ecosystems 7:134–146

    Article  CAS  Google Scholar 

  • RA (Rainforest Alliance) (2011) Finca Platanillo in Guatemala is the world’s first coffee farm to be Rainforest Alliance verified as Climate Friendly http://www.rainforest-alliance.org/newsroom/news/first-climate-friendly-farm. Accessed 2 January 2012

  • Raudsepp-Hearne C, Peterson GD, Bennett EM (2010) Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc Natl Acad Sci 107:5242–5247

    Article  PubMed  CAS  Google Scholar 

  • Rhoades CC, Eckert GE, Coleman DC (2000) Soil carbon differences among forest, agriculture, and secondary vegetation in lower montane Ecuador. Ecol Appl 10(2):497–505

    Article  Google Scholar 

  • Rice RA (2003) Coffee production in a time of crisis: social and environmental connections. SAIS Review 21(1):221–245

    Article  Google Scholar 

  • Rice RA, Ward J (1996) Coffee, conservation, and commerce in the western hemisphere. The Smithsonian Migratory Bird Center and the Natural Resources Defense Council, Washington, DC

    Google Scholar 

  • Robertson GP, Swinton SM (2005) Reconciling agricultural productivity and environmental integrity: a grand challenge for agriculture. Front Ecol Environ 3(1):38–46

    Article  Google Scholar 

  • Rowell D (1994) Soil science: methods and applications. Longman Scientific & Technical, Essex

    Google Scholar 

  • Schlesinger WH (1986) Changes in soil carbon storage and associated properties with disturbance and recovery. In: Trabalka JR, Reichle DE (eds) The changing carbon cycle: a global analysis. Springer, New York, pp 194–220

    Google Scholar 

  • Schlesinger WH (1990) Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348:232–234

    Article  CAS  Google Scholar 

  • Segura M, Kanninen M, Suárez D (2006) Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agrofor Syst 68:143–150

    Article  Google Scholar 

  • Simmons CS, Tarano JM, Pinto JH (1959) Clasificación de Reconocimiento de los Suelos de la República de Guatemala. Instituto Agropecuario Nacional, Ministerio de Agricultura de Guatemala, Guatemala

    Google Scholar 

  • Soto-Pinto L, Romero-Alvarado Y, Caballero-Nieto J, Segura Warnholtz G (2001) Woody plant diversity and structure of shade-grown-coffee plantations in northern Chiapas, Mexico. Rev Biol Trop 49(3–4):977–987

    PubMed  CAS  Google Scholar 

  • Soto-Pinto L, Anzueto M, Mendoza J, Ferrer GJ, de Jong B (2010) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor Syst 78:39–51

    Article  Google Scholar 

  • Súarez Pascua DA (2002) Cuantifación y valoración económica del servicio ambiental almacenamiento de carbono en sistemas agroforestales de café en la Comarca Yassica Sur, Matagalpa. Nicaragua, Dissertation, CATIE

    Google Scholar 

  • Tucker C, Eakin H, Castellanos E (2010) Perceptions of risk and adaptation: coffee producers, market shocks, and extreme weather in Central America and Mexico. Glob Environ Chang 20:23–32

    Article  Google Scholar 

  • UNFCCC (United Nations Framework Convention on Climate Change) (2006) Revised simplified baseline and monitoring methodologies for selected small-scale afforestation and reforestation activities under the clean development mechanism. Bonn, Germany. http://cdm.unfccc.int/methodologies/DB/91OLF4XK2MEDIRIWUQ22X3ZQAOPBWY/view.html. Accessed 12 December 2011

  • van Noordwijk M, Rahayu S, Hairiah K, Wulan YC, Farida A, Verbist B (2002) Carbon stock assessment for a forest-to-coffee conversion landscape in Sumber-Jaya (Lampung, Indonesia): from allometric equations to land use change analysis. Science in China Series C-Life Sciences 45:75–86. Suppl. Science in China Press, Beijing

    Google Scholar 

  • Varangis P, Siegel P, Giovannucci D, Lewin B (2003) Dealing with the coffee crisis in Central America: impacts and strategies. Policy Research Working Paper 2993, World Bank, Washington, DC

  • Wang Y, Amundson R, Trumbore S (1999) The impact of land use change on C turnover in soils. Global Biogeochem Cycles 13(1):47–57

    Article  CAS  Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Science Foundation’s Geography and Spatial Sciences Program (DDRI #0927491). Many thanks to the smallholder coffee growers in Guatemala who graciously allowed us to collect data on their land during harvesting season and to the community of Santa Clara for allowing access to their municipal park. We also thank Arturo Ujpán Mendoza at Ati’t Ala’ for his help collecting field data, Gabriela Alfaro at the Universidad del Valle de Guatemala for her help with data analysis, and Sarah Mincey at Indiana University for her comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikaela Schmitt-Harsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt-Harsh, M., Evans, T.P., Castellanos, E. et al. Carbon stocks in coffee agroforests and mixed dry tropical forests in the western highlands of Guatemala. Agroforest Syst 86, 141–157 (2012). https://doi.org/10.1007/s10457-012-9549-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-012-9549-x

Keywords

Navigation