Skip to main content
Log in

A dynamic simulation study of the impacts of enhanced UV-B radiation on winter wheat photosynthetic production and dry matter accumulation

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

By using the system-dynamic software package STELLA, a simulative study was conducted on the photosynthetic productivity and change of the accumulated dry matter of wheat population, related to enhanced UV-B radiation that influences photosynthesis. The effects of daily temperature and crop physiological age on the photosynthesis rate were considered comprehensively. Statistical analysis was undertaken to assess the fitness between simulations and observations of accumulated dry matter by means of root-mean-square error and relative error. Results show that there is no significant difference between simulations and observations, indicating that the STELLA software is effective in imitating the growth. This software provides a new approach in establishing a simulative model for crop growth under the conditions of various climate and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aassine S, El Jai MC (2002) Vegetation dynamics modelling: a method for coupling local and space dynamics. Ecol Modell 154:237–249. doi:10.1016/S0304-3800(02)00061-3

    Article  Google Scholar 

  • Al-Oudat M, Baydoun SA, Mohammad A (1998) Effects of enhanced UV-B on growth and yield of two Syrian crops wheat (Triticum durum var. Horani) and broad beans (Vicia faba) under field conditions. Environ Exp Bot 40:11–16. doi:10.1016/S0098-8472(98)00014-8

    Article  Google Scholar 

  • Caldwell MM, Bjorn LO, Bornman JF et al (1998) Effects of increased solar ultraviolet radiation on terrestrial ecosystems. J Photochem Photobiol B Biol 46:40–52. doi:10.1016/S1011-1344(98)00184-5

    Article  CAS  Google Scholar 

  • Cao W, Moss DN (1997) Modeling phasic development in rape: a conceptual integration of physiological components. J Agric Sci 129:163–172. doi:10.1017/S0021859697004668

    Article  Google Scholar 

  • Cheng HS, Wang Y, Li SS et al. (2007) Applications of system dynamics software stella in ecology. J S China Norm Univ 3:126–131. J Natural Science Edition

    Google Scholar 

  • Choudhury BJ (2000) A sensitivity analysis of the radiation use efficiency for gross photosynthesis and net carbon accumulation by wheat. Agric For Meteorol 101:217–234. doi:10.1016/S0168-1923(99)00156-2

    Article  Google Scholar 

  • Connor DJ, Fereres E (1999) A dynamic model of crop growth and partitioning of biomass. Field Crops Res 63:139–157. doi:10.1016/S0378-4290(99)00032-5

    Article  Google Scholar 

  • Connor DJ, Rimmington GM (1991) Simulation models and analysis of variability in Australia wheat production. Proceedings of workshop on climate variations and change: Importance for agriculture in the pacific rim. University of California. Ca USA Now 27–44

  • Costanza R, Voinov A, Boumans R et al (2002) Integrated ecological economic modeling of the Patuxent river watershed, Maryland. Ecol Monogr 72(2):203–231

    Article  Google Scholar 

  • Donna MR, Paula JM, David HW (2006) The comparison of four dynamic systems-based software packages: translation and sensitivity analysis. Environ Model Softw 21:1491–1502. doi:10.1016/j.envsoft.2005.07.009

    Article  Google Scholar 

  • Eitzingera J, Štastná M, Žalud Z (2003) A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios. Agric Water Manage 61:195–217. doi:10.1016/S0378-3774(03)00024-6

    Article  Google Scholar 

  • GAO LZ (2004) The simulation model of crop growth. in Hongkong: Tian-Ma Books Co.Ltd. 150–168. (in Chinese)

  • Gao W, Richard HG, Gordon M (2003) Ultraviolet-B radiation in a row-crop canopy: an extended 1-D model. Agric For Meteorol 120:141–151. doi:10.1016/j.agrformet.2003.08.026

    Article  Google Scholar 

  • Hailemariam L, Martin O, Osvaldo C (2007) A mathematical model for the isothermal growth of bubbles in wheat dough. J Food Eng 82:466–477. doi:10.1016/j.jfoodeng.2007.03.006

    Article  Google Scholar 

  • Hakala K, Jauhiainen L, Hoskela T et al (2002) Sensitivity of crops to increased ultraviolet radiation in northern growing conditions. J Agron Crop Sci 188:8–18. doi:10.1046/j.1439-037x.2002.00536.x

    Article  Google Scholar 

  • Hannon B, Ruth M (1994) Dynamic modeling. Springer-Verlag, New York

    Google Scholar 

  • Hunt LA, Pararajasingham S (1995) CROPSIM-WHEAT: a model describing the growth and development of wheat. Can J Plant Sci 75:619–632

    Google Scholar 

  • Isee System Technical document for the iThink and STELLA software (2007) http://www.iseesystems.com

  • Kakani VG, Reddy KR, Zhao D, Sailaja K (2003) Field crop responses to ultraviolet-B radiation: a review. Agric For Meteorol 120:191–218. doi:10.1016/j.agrformet.2003.08.015

    Article  Google Scholar 

  • Lawless C, Semenov MA, Jamieson PD (2005) A wheat canopy model linking leaf area and phenology. Eur J Agron 22:19–32. doi:10.1016/j.eja.2003.11.004

    Article  Google Scholar 

  • Li Y, Wang X (1998) Influence of UV radiation on physiology, yield and quality of spring wheat. J Environ Sci (China) 18(5):504–509

    CAS  Google Scholar 

  • Li Y, Wang XL (1999) Effect of enhanced UV-B radiation on biomass accumulation and yield of spring wheat colonies and assessment under field conditions. Rural Eco-Environment 15(2):28–31 (in Chinese)

    Google Scholar 

  • Li Y, Zu Y, Chen J et al (2000) Intraspecific differences in physiological response of 20 wheat cultivars to enhanced ultraviolet-B radiation under field conditions. Environ Exp Bot 44:95–103. doi:10.1016/S0098-8472(00)00057-5

    Article  CAS  Google Scholar 

  • Liu TM, Cao WX, Luo WH (2001) A simulation model of photosynthetic production and dry matter accumulation in wheat. J Triticeae Crops 21(3):26–31 (in Chinese)

    CAS  Google Scholar 

  • Liu TM, Gao CG, Huang Y et al (2003) A simulation model of photosynthetic production and dry matter accumulation in rapeseed. J Huazhong Agric Univ 22(6):533–537 (in Chinese)

    Google Scholar 

  • Lubin D, Mitchell BG, Frederick JE et al (1992) A contribution towards understanding the biospherical significance of Antarctic ozone depletion. J Geophys Res 97:7817–7828

    CAS  Google Scholar 

  • Madronich S, Mckenzie RL, Bjom LO et al (1998) Changes in biologically active ultraviolet radiation reaching the earth’s surface. J Photochem Photobiol B 46(1–3):5–19. doi:10.1016/S1011-1344(98)00182-1

    Article  PubMed  CAS  Google Scholar 

  • Mayus M, Van Keulen H, Stroosnijder L (1999) A model of tree-crop competition for windbreak systems in the Sahel: description and evaluation. Agrofor Syst 43:183–201. doi:10.1023/A:1026444414803

    Article  Google Scholar 

  • Molina MJ, Molina LT (1992) Stratospheric ozone. ACS Symp Ser Am Chem Soc Washington, DC, 483:24–35

  • Niu LY, Ru ZG, Liu MJ (2002) Studies on the diurnal variation of photosynthesis of flag leaf and evaluation method of photosynthetic potentiality in winter wheat. J Triticeae Crops 22(2):51–54 (in Chinese)

    Google Scholar 

  • Nziguheba G, Merckx R, Palm C (2002) Combining Tithonia diversifolia and fertilizers for maize production in a phosphorus deficient soil in Kenya. Agrofor Syst 55:165–174. doi:10.1023/A:1020540411245

    Article  Google Scholar 

  • O’Leary GJ, Connor DJ (1996) A simulation model of the wheat crop in response to water and nitrogen supply: I. Model construction. Agric Syst 52:1–29. doi:10.1016/0308-521X(96)00003-0

    Article  Google Scholar 

  • Peterson S, Richmond B (1996) STELLA research technical documentation. High performance systems. Hanover, NH

  • Shindell DT, Rind D, Lonergan P (1998) Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations. Nature 392:589–592. doi:10.1038/33385

    Article  CAS  Google Scholar 

  • Sinclair FL (1999) A general classification of agroforestry practice. Agrofor Syst 46:161–180. doi:10.1023/A:1006278928088

    Article  Google Scholar 

  • Van Noordwijk M, Lusiana B (1999) WaNuLCAS, a model of water, nutrient and light capture in agroforestry systems. Agrofor Syst 43:217–242. doi:10.1023/A:1026417120254

    Article  Google Scholar 

  • Wallach D (2006) Evaluating crop models. In: Wallach D, Makowski D, Jones JW (eds) Working with dynamic crop models. Elsevier, Amsterdam, pp 11–53

    Google Scholar 

  • Wallach D, Goffinet B (1987) Mean squared error of prediction in models for studying ecological and agronomic systems. Biometrics 43:561–573. doi:10.2307/2531995

    Article  Google Scholar 

  • WMO (World Meteorological Organization) (2002) Scientific assessment of ozone depletion. In: Global ozone research and monitoring project[C]//Ajavon AN, Albritton DL, Watson RT et al. Report No. 47. Geneva, USA: World Meteorological Organization

  • Yan MC, Cao WX, Luo WH (2000) A mechanistic model of phasic and phenological development of wheat I. Assumption and description of the model. Chin J Appl Ecol 11(3):355–359 (in Chinese)

    CAS  Google Scholar 

  • Ying OY, Cheng HH, Dong YH et al (2007) Simulating uptake and transport of TNT by plants using STELLA. Chemosphere 69:1245–1252. doi:10.1016/j.chemosphere.2007.05.081

    Article  CAS  Google Scholar 

  • Zheng YF, Yang ZM, Yan JY et al (1996) Biological response of crops on enhanced solar ultraviolet radiation and its estimation. Chin J Appl Ecol 7(1):107–109 (in Chinese)

    Google Scholar 

  • Zheng YF, Gao W, Wang CH (2003a) Yield and yield formation of winter wheat in response to enhanced solar ultraviolet-B radiation. Agric For Meteorol 20:279–283. doi:10.1016/j.agrformet.2003.08.022

    Article  Google Scholar 

  • Zheng YF, Gao W, James S et al (2003b) Growth analytic simulation of soybean and winter wheat crops under different does of UV-B irradiance. Proceedings of SPIE, vol 4896:130–134

  • Zhu YJ, Feng LP, Yi P (2007) A dynamic model simulating photosynthetic production and dry matter accumulation for alfalfa. Acta Agronomica Sin 33(10):1682–1687 (in Chinese)

    CAS  Google Scholar 

Download references

Acknowledgments

This study is supported jointly by the Natural Science Foundation of China (No: 40775072), Jiangsu Key Laboratory of Meteorological Disaster (KLME05005), and the Foundation of Scientific Research of Nanjing University of Information Science & Technology (No: 20070023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youfei Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, R., Zheng, Y. & Liu, J. A dynamic simulation study of the impacts of enhanced UV-B radiation on winter wheat photosynthetic production and dry matter accumulation. Agroforest Syst 77, 123–130 (2009). https://doi.org/10.1007/s10457-009-9231-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-009-9231-0

Keywords

Navigation