Skip to main content
Log in

Coarse root growth of Veronese poplar trees varies with position on an erodible slope in New Zealand

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Poplars are commonly planted on moist, unstable pastoral hill country to prevent or reduce soil erosion, thereby maintaining hillslope integrity and pasture production. Mechanical reinforcement by poplar root systems aids slope stabilisation, particularly when the roots are anchored into the fragipan or underlying rock. Total root length, mass and distribution of coarse roots (≥2 mm diameter) were determined for three Populus deltoides × nigra ‘Veronese’ trees in their 12th growing season after being planted as 3 m poles at upper slope (TU), mid-slope (TM) and lower slope (TL) positions on an erodible hillslope near Palmerston North in the southern North Island. Most of the roots were distributed in the top 40 cm of soil. Depth of penetration of vertical roots was dependent on slope position and limited by the available depth of the soil above a fragipan (0.35 m at the upper slope to 1.4 m at the lower slope). Roots penetrated the fragipan at the upper slope position where the soil depth was shallowest, and at the mid-slope, but not the lower slope position. Total coarse root length was 287.9 m for TU, 1,131.3 m for TM and 1,611.3 m for TL, and total coarse root dry mass (excluding root crown) was 8.15 kg for TU, 38.77 kg for TM and 81.35 kg for TL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abernethy B, Rutherfurd ID (2001) The distribution and strength of riparian tree roots in relation to riverbank reinforcement. Hydrol Process 15:63–79. doi:10.1002/hyp.152

    Article  Google Scholar 

  • Ball PR, Luscombe PC, Grant DA (1982) Nitrogen on hill country. In: Lynch PB (ed) Nitrogen fertilisers in New Zealand agriculture. New Zealand Institute of Agricultural Sciences, pp 133–147

  • Berninger F, Coll L, Vanninen P, Mäkelä A, Palmroth S, Nikinmaa E (2005) Effects of tree size and position on pipe model ratios in Scots pine. Can J For Res 35:1294–1304. doi:10.1139/x05-055

    Article  Google Scholar 

  • Blaschke PM, Trustrum NA, DeRose RC (1992) Ecosystem processes and sustainable land use in New Zealand steeplands. Agric Ecosyst Environ 41:153–178. doi:10.1016/0167-8809(92)90107-M

    Article  Google Scholar 

  • Bolte A, Rahmann T, Kuhr M, Pogoda P, Murach D, Gadow KV (2004) Relationships between tree dimension and coarse root biomass in mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.). Plant Soil 264:1–11. doi:10.1023/B:PLSO.0000047777.23344.a3

    Article  CAS  Google Scholar 

  • Bransby MF, Davies MCR, Mickovski SB, Sonnenberg R, Bengough AG, Hallett PD (2006) Stabilisation of slopes by vegetation reinforcement. In: Zhang, Wang (eds) Physical modelling in geotechnics-6th ICPMG ’06-Ng, © 2006 Taylor & Francis Group, London, ISBN 0-415 41586-1

  • Burgess PJ, Nkomaula JC, Medeiros Ramos AL (1997) Root distribution and water use in a four-year old silvoarable system. Agrofor Forum 8:15–18

    Google Scholar 

  • Coutts MP, Nicoll BC (1991) Orientation of the lateral roots of trees 1. Upward growth of surface roots and deflection near the soil surface. New Phytol 119:227–234. doi:10.1111/j.1469-8137.1991.tb01025.x

    Article  Google Scholar 

  • Coutts MP, Nielsen CN, Nicoll BC (1999) The development of symmetry, rigidity and anchorage in the structural root system of conifers. Plant Soil 217:1–15. doi:10.1023/A:1004578032481

    Article  Google Scholar 

  • Cowie JD (1983) The soils of Ballantrae hill country research station, Woodville. Unpublished New Zealand Soil Bureau report held at AgResearch, Palmerston North

    Google Scholar 

  • Danjon F, Fourcaud T, Berr D (2005) Root architecture and wind-firmness of mature Pinus pinaster. New Phytol 168:387–400. doi:10.1111/j.1469-8137.2005.01497.x

    Article  PubMed  Google Scholar 

  • Davidson DW, Kapustka LA, Koch RG (1991) The role of plant root distribution and strength in moderating erosion of red clay in the Lake Superior watershed. Trans Wisc Acad Sci Arts Lett 77:51–63

    Google Scholar 

  • De Baets S, Poesen J, Reubens B, Wemans K, De Baerdemaeker J, Muys B (2007) Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength. Plant Soil 305:207–226

    Article  Google Scholar 

  • Di Iorio A, Lasserre B, Scippa GS, Chiatante D (2005) Root system architecture of Quercus pubescens trees growing on different sloping conditions. Ann Bot (Lond) 95:351–361

    Google Scholar 

  • Douglas GB, Walcroft AS, Hurst SE, Potter JF, Foote AG, Fung LE, Edwards WRN, van den Dijssel C (2006a) Interactions between widely spaced young poplars (Populus spp.) and introduced pasture mixtures. Agrofor Syst 66:165–178. doi:10.1007/s10457-005-6641-5

    Article  Google Scholar 

  • Douglas GB, Walcroft AS, Hurst SE, Potter JF, Foote AG, Fung LE, Edwards WRN, van den Dijssel C (2006b) Interactions between widely spaced young poplars (Populus spp.) and the understorey environment. Agrofor Syst 67:177–186. doi:10.1007/s10457-005-3394-0

    Article  Google Scholar 

  • Eamus D, Chen X, Kelley G, Hutley LB (2002) Root biomass and root fractal analyses of an open Eucalyptus forest in a savanna of north Australia. Aust J Bot 50:31–41. doi:10.1071/BT01054

    Article  Google Scholar 

  • Fang S, Xue J, Tang L (2007) Biomass production and carbon sequestration potential in poplar plantations with different management patterns. J Environ Qual 85:672–679

    CAS  Google Scholar 

  • Fitter AH (2002) Characteristics and functions of root systems. In: Weisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York, pp 15–32

    Google Scholar 

  • Friend AL, Mobley JA, Ryan EA, Bradshaw HD (2000) Root growth plasticity of hybrid poplar in response to soil nutrient gradients. J Sustain For 10:133–140. doi:10.1300/J091v10n01_15

    Google Scholar 

  • Ganatsas P, Spanos I (2005) Root system asymmetry of Mediterranean pines. Plant Soil 278:75–83. doi:10.1007/s11104-005-1092-3

    Article  CAS  Google Scholar 

  • Genet M, Kokutse N, Stokes A, Fourcaud T, Cai X, Ji J, Mickovski S (2008) Root reinforcement in plantations of Cryptomeria japonica D. Don: effect of tree age and stand structure on slope stability. For Ecol Man 256:1517–1526. doi:10.1016/j.foreco.2008.05.050

    Article  Google Scholar 

  • Gottlicher SG, Taylor AFS, Grip H, Betson NR, Valinger E, Hogberg MN, Hogberg P (2008) The lateral spread of tree root systems in boreal forests: estimates based on 15N uptake and distribution of sporocarps of ectomycorrhizal fungi. For Ecol Man 255:75–81. doi:10.1016/j.foreco.2007.08.032

    Article  Google Scholar 

  • Gray DH, Leiser AJ (1982) Biotechnical slope protection and erosion control. Van Nostrand Reinhold, New York, pp 271–278

    Google Scholar 

  • Gray DH, Solir RB (1996) Biotechnical and soil engineering slope stabilization: a practical guide for erosion control. Wiley, New York

    Google Scholar 

  • Hazard L, Barker DJ, Easton HS (2001) Morphogenetic adaptation to defoliation and soil fertility in perennial ryegrass (Lolium perenne). NZ J Agr Res 44:1–12

    Google Scholar 

  • Hewitt AE (1998) New Zealand soil classification. Landcare Research Science Series No. 1, 2nd edn, 133 pp

  • Jackson DS, Chittenden J (1981) Estimation of dry matter in Pinus radiata root systems. 1. Individual trees. NZ J For Sci 11:164–182

    Google Scholar 

  • Kuiper LC, Coutts MP (1992) Spatial disposition and extension of the structural root system of Douglas-fir. For Ecol Man 47:111–125. doi:10.1016/0378-1127(92)90269-F

    Article  Google Scholar 

  • Malhotra PP, Tandon VN, Kumar P (1985) Biomass production, its distribution and biological productivity in Pinus patula, Schl and Cham plantations in Nilgiris. Indian For 111:12–21

    Google Scholar 

  • McIvor IR, Douglas GB, Hurst SE, Hussain Z, Foote AG (2008) Structural root growth of young Veronese poplars on erodible slopes in the southern North Island, New Zealand. Agrofor Syst 72:75–86. doi:10.1007/s10457-007-9090-5

    Article  Google Scholar 

  • Meinzer FC, Clearwater MJ, Goldstein G (2001) Water transport in trees: some current perspectives, new insights and some controversies. Environ Exp Bot 45:239–262. doi:10.1016/S0098-8472(01)00074-0

    Article  PubMed  Google Scholar 

  • Mickovski SB, Ennos AR (2003) Anchorage and asymmetry in the root system of Pinus peuce. Silva Fenn 37:161–173

    Google Scholar 

  • Mountier NS, Grigg JL, Oomen GA (1966) Sources of error in advisory soil tests. I. Laboratory resources. NZ J Agric Res 9:328–338

    Google Scholar 

  • Mulia R, Dupraz C (2006) Unusual fine root distributions of two deciduous tree species in southern France: what consequences for modelling of tree root dynamics? Plant Soil 281:71–85. doi:10.1007/s11104-005-3770-6

    Article  CAS  Google Scholar 

  • Nicoll BC, Ray D (1996) Adaptive growth of tree root systems in response to wind action and site conditions. Tree Physiol 16:891–898

    PubMed  Google Scholar 

  • Nielsen CN, Dencker I (1998) Root architecture and root/shoot ratios of Norway spruce as affected by thinning density and soil type in Denmark. In: Box JE Jr (ed) Root demographics and their efficiencies in sustainable agriculture, grasslands and forest ecosystems. Kluwer Academic Publishers, Dordrecht, pp 721–736

    Google Scholar 

  • Puri S, Singh V, Bhushan B, Singh S (1994) Biomass production and distribution of roots in three stands of Populus deltoides. For Ecol Man 65:135–147. doi:10.1016/0378-1127(94)90165-1

    Article  Google Scholar 

  • Reubens B, Poesen P, Danjon F, Geudens G, Muys B (2007) The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees (Berl) 21:385–402. doi:10.1007/s00468-007-0132-4

    Article  Google Scholar 

  • Scarascia-Mugnozza GE, Ceulemans R, Heilman PE, Isebrands JG, Stettler RF, Hinckley TM (1997) Production physiology and morphology of Populus species and their hybrids grown under short rotation. II. Biomass components and harvest index of hybrid and parental species clones. Can J For Res 27:285–294

    Google Scholar 

  • Shinozaki K, Yoda K, Hozumi K, Kira T (1964) A quantitative analysis of plant form: the pipe model theory. I. Basic analyses. Jpn J Ecol 14:97–105

    Google Scholar 

  • Shrestha MD, Horiuchi M, Yamadera Y, Miyazaki T (2000) A study on the adaptability mechanism of tree roots on steep slopes. In: Stokes A (ed) The supporting roots of trees, woody plants: form, function, physiology. Kluwer Academic Publishers, Dordrecht, pp 51–57

    Google Scholar 

  • Smith DM (2001) Estimation of tree root lengths using fractal branching rules: a comparison with soil coring for Grevillea robusta. Plant Soil 229:295–304. doi:10.1023/A:1004887113229

    Article  CAS  Google Scholar 

  • Snyder KA, Williams DG (2007) Root allocation and water uptake patterns in riparian tree saplings: responses to irrigation and defoliation. For Ecol Man 246:222–231. doi:10.1016/j.foreco.2007.04.032

    Article  Google Scholar 

  • Statistics NZ (2007) http://www.stats.govt.nz/NR/rdonlyres/0B65E72A-2BE0-4D4C-A73C-89EEB35EA9EA/38797/agriculturalareashectaresbyfarmtype07.xls

  • Stokes A, Matteck C (1996) Variation in wood strength in tree roots. J Exp Bot 47:693–699. doi:10.1093/jxb/47.5.693

    Article  CAS  Google Scholar 

  • Stokes A, Berthier A, Sacriste S, Martin F (1998) Variations in maturation strains and root shape in root systems of Maritime pine (Pinus pinaster Ait.). Trees (Berl) 12:334–339

    Google Scholar 

  • Tandon VN, Pandey MC, Rawat HS, Sharma DC (1991) Organic productivity and mineral cycling in plantations of Populus deltoides in Tarai region of Uttar Pradewsh. Indian For 117:596–608

    Google Scholar 

  • Tatsumi JT, Yamauchi A, Kono Y (1989) Fractal analysis of plant root systems. Ann Bot (Lond) 64:499–503

    Google Scholar 

  • Van Noordwijk M, Spek LY, de Willigen P (1994) Proximal root diameter as predictor of total root size for fractal branching models. 1. Theory. Plant Soil 164:107–117. doi:10.1007/BF00010116

    Article  Google Scholar 

  • Waldron LJ, Dakessian S (1981) Soil reinforcement by roots: calculation of increased soil shear resistance from root properties. Soil Sci 132:427–435. doi:10.1097/00010694-198112000-00007

    Article  Google Scholar 

  • Wall AJ, Mackay AD, Kemp PD, Gillingham AG, Edwards WRN (1997) The impact of widely spaced soil conservation trees on hill pastoral systems. Proc NZ Grassland Assoc 59:171–177

    Google Scholar 

  • Watson A, O’Loughlin C (1990) Structural root morphology and biomass of three age classes of Pinus radiata. NZ J For Sci 20:97–110

    Google Scholar 

  • Watson A, Phillips C, Marden M (1999) Root strength, growth, and rates of decay: root reinforcement changes of two tree species and their contribution to slope stability. Plant Soil 217:39–47. doi:10.1023/A:1004682509514

    Article  Google Scholar 

  • Wilkinson AG (1999) Poplars and willows for soil erosion control in New Zealand. Biomass Bioenergy 16:263–274. doi:10.1016/S0961-9534(99)00007-0

    Article  Google Scholar 

  • Wilson BF (1975) Distribution of secondary thickening in tree root systems. In: Torrey JG, Clarkson DT (eds) The development and function of roots. Academic Press, 618 pp

  • Wu TH, Beal PE, Chinchun L (1988) In-situ shear test of soil-root systems. J Geotech Eng 114:1377–1393

    Google Scholar 

Download references

Acknowledgments

We are grateful to several students involved in the excavations and measurements. The manuscript was improved by helpful comments from an unknown referee. This research was funded by the Sustainable Land Use Research Initiative, Foundation for Research Science and Technology programme C02X0405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. R. McIvor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McIvor, I.R., Douglas, G.B. & Benavides, R. Coarse root growth of Veronese poplar trees varies with position on an erodible slope in New Zealand. Agroforest Syst 76, 251–264 (2009). https://doi.org/10.1007/s10457-009-9209-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-009-9209-y

Keywords

Navigation