Skip to main content

Advertisement

Log in

CCM2-deficient endothelial cells undergo a ROCK-dependent reprogramming into senescence-associated secretory phenotype

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Cerebral cavernous malformation (CCM) is a cerebrovascular disease in which stacks of dilated haemorrhagic capillaries form focally in the brain. Whether and how defective mechanotransduction, cellular mosaicism and inflammation interplay to sustain the progression of CCM disease is unknown. Here, we reveal that CCM1- and CCM2-silenced endothelial cells expanded in vitro enter into senescence-associated secretory phenotype (SASP) that they use to invade the extracellular matrix and attract surrounding wild-type endothelial and immune cells. Further, we demonstrate that this SASP is driven by the cytoskeletal, molecular and transcriptomic disorders provoked by ROCK dysfunctions. By this, we propose that CCM2 and ROCK could be parts of a scaffold controlling senescence, bringing new insights into the emerging field of the control of ageing by cellular mechanics. These in vitro findings reconcile the known dysregulated traits of CCM2-deficient endothelial cells into a unique endothelial fate. Based on these in vitro results, we propose that a SASP could link the increased ROCK-dependent cell contractility in CCM2-deficient endothelial cells with microenvironment remodelling and long-range chemo-attraction of endothelial and immune cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The raw data (FastQ files) and processed data (count files) are deposited in the Gene Expression Omnibus database. All data supporting the findings of this study are available from the corresponding author on reasonable request.

References

  1. Clatterbuck RE, Eberhart CG, Crain BJ, Rigamonti D (2001) Ultrastructural and immunocytochemical evidence that an incompetent blood-brain barrier is related to the pathophysiology of cavernous malformations. J Neurol Neurosurg Psychiatry 71(2):188–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Labauge P, Denier C, Bergametti F, Tournier-Lasserve E (2007) Genetics of cavernous angiomas. Lancet Neurol 6(3):237–244

    Article  CAS  PubMed  Google Scholar 

  3. Awad IA, Polster SP (2019) Cavernous angiomas: deconstructing a neurosurgical disease. J Neurosurg 131(1):1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Riant F, Bergametti F, Fournier HD, Chapon F, Michalak-Provost S, Cecillon M et al (2013) CCM3 mutations are associated with early-onset cerebral hemorrhage and multiple meningiomas. Mol Syndromol 4(4):165–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shenkar R, Shi C, Rebeiz T, Stockton RA, McDonald DA, Mikati AG et al (2015) Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations. Genet Med 17(3):188–196

    Article  CAS  PubMed  Google Scholar 

  6. Labauge P, Brunereau L, Lévy C, Laberge S, Houtteville JP (2000) The natural history of familial cerebral cavernomas: a retrospective MRI study of 40 patients. Neuroradiology 42(5):327–332

    Article  CAS  PubMed  Google Scholar 

  7. McDonald DA, Shenkar R, Shi C, Stockton RA, Akers AL, Kucherlapati MH et al (2011) A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease. Hum Mol Genet 20(2):211–222

    Article  CAS  PubMed  Google Scholar 

  8. Pagenstecher A, Stahl S, Sure U, Felbor U (2009) A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of CCM1, CCM2 or CCM3 in affected endothelial cells. Hum Mol Genet 18(5):911–918

    Article  CAS  PubMed  Google Scholar 

  9. Rath M, Pagenstecher A, Hoischen A, Felbor U (2020) Postzygotic mosaicism in cerebral cavernous malformation. J Med Genet 57(3):212–216

    Article  CAS  PubMed  Google Scholar 

  10. Detter MR, Snellings DA, Marchuk DA (2018) Cerebral cavernous malformations develop through clonal expansion of mutant endothelial cells. Circ Res 123(10):1143–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Malinverno M, Maderna C, Abu Taha A, Corada M, Orsenigo F, Valentino M et al (2019) Endothelial cell clonal expansion in the development of cerebral cavernous malformations. Nat Commun 10(1):2761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Bicer A, Guclu B, Ozkan A, Kurtkaya O, Koc DY, Necmettin Pamir M et al (2010) Expressions of angiogenesis associated matrix metalloproteinases and extracellular matrix proteins in cerebral vascular malformations. J Clin Neurosci 17(2):232–236

    Article  CAS  PubMed  Google Scholar 

  13. Zhou Z, Tang AT, Wong W-Y, Bamezai S, Goddard LM, Shenkar R et al (2016) Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature 532(7597):122–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fujimura M, Watanabe M, Shimizu H, Tominaga T (2007) Expression of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase (TIMP) in cerebral cavernous malformations: immunohistochemical analysis of MMP-2, -9 and TIMP-2. Acta Neurochir 149(2):179–183

    Article  CAS  PubMed  Google Scholar 

  15. Noshiro S, Mikami T, Kataoka-Sasaki Y, Sasaki M, Ohnishi H, Ohtaki S et al (2017) Co-expression of tissue factor and IL-6 in immature endothelial cells of cerebral cavernous malformations. J Clin Neurosci 37:83–90

    Article  CAS  PubMed  Google Scholar 

  16. Goitre L, Balzac F, Degani S, Degan P, Marchi S, Pinton P et al (2010) KRIT1 regulates the homeostasis of intracellular reactive oxygen species. PLoS ONE 5(7):1–22

    Article  CAS  Google Scholar 

  17. Marchi S, Corricelli M, Trapani E, Bravi L, Pittaro A, Delle Monache S et al (2015) Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Mol Med 7(11):1403–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M et al (2013) EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 498(7455):492–496

    Article  CAS  PubMed  Google Scholar 

  19. Faurobert E, Rome C, Lisowska J, Manet-Dupé S, Boulday G, Malbouyres M et al (2013) CCM1-ICAP-1 complex controls β1 integrin-dependent endothelial contractility and fibronectin remodeling. J Cell Biol 202(3):545–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Renz M, Otten C, Faurobert E, Rudolph F, Zhu Y, Boulday G et al (2015) Regulation of β1 integrin-Klf2-mediated angiogenesis by CCM proteins. Dev Cell 32(2):181–190

    Article  CAS  PubMed  Google Scholar 

  21. Uhlik MT, Abell AN, Johnson NL, Sun W, Cuevas BD, Lobel-Rice KE et al (2003) Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nat Cell Biol 5(12):1104–1110

    Article  CAS  PubMed  Google Scholar 

  22. Zhou Z, Rawnsley DR, Goddard LM, Pan W, Cao X-J, Jakus Z et al (2015) The cerebral cavernous malformation pathway controls cardiac development via regulation of endocardial MEKK3 signaling and KLF expression. Dev Cell 32(2):168–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cuttano R, Rudini N, Bravi L, Corada M, Giampietro C, Papa E et al (2016) KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Mol Med 8(1):6–24

    Article  CAS  PubMed  Google Scholar 

  24. Tang AT, Choi JP, Kotzin JJ, Yang Y, Hong CC, Hobson N et al (2017) Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature 545(7654):305–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li J, Zhao Y, Coleman P, Chen J, Ting KK, Choi JP et al (2019) Low fluid shear stress conditions contribute to activation of cerebral cavernous malformation signalling pathways. Biochim Biophys Acta Mol Basis Dis 1865(11):165519

    Article  CAS  PubMed  Google Scholar 

  26. Whitehead KJ, Chan AC, Navankasattusas S, Koh W, London NR, Ling J et al (2009) The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med 15(2):177–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Borikova AL, Dibble CF, Sciaky N, Welch CM, Abell AN, Bencharit S et al (2010) Rho kinase inhibition rescues the endothelial cell cerebral cavernous malformation phenotype. J Biol Chem 285(16):11760–11764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stockton RA, Shenkar R, Awad IA, Ginsberg MH (2010) Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity. J Exp Med 207(4):881–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lisowska J, Rödel CJ, Manet S, Miroshnikova YA, Boyault C, Planus E et al (2018) The CCM1–CCM2 complex controls complementary functions of ROCK1 and ROCK2 that are required for endothelial integrity. J Cell Sci 131(15):jcs216093

    Article  PubMed  CAS  Google Scholar 

  30. McDonald DA, Shi C, Shenkar R, Stockton RA, Liu F, Ginsberg MH et al (2012) Fasudil decreases lesion burden in a murine model of cerebral cavernous malformation disease. Stroke 43(2):571–574

    Article  CAS  PubMed  Google Scholar 

  31. Shenkar R, Shi C, Austin C, Moore T, Lightle R, Cao Y et al (2017) RhoA kinase inhibition with Fasudil versus simvastatin in murine models of cerebral cavernous malformations. Stroke 48(1):187–194

    Article  CAS  PubMed  Google Scholar 

  32. Polster SP, Stadnik A, Akers AL, Cao Y, Christoforidis GA, Fam MD et al (2019) Atorvastatin treatment of cavernous angiomas with symptomatic hemorrhage exploratory proof of concept (AT CASH EPOC) trial. Neurosurgery 85(6):843–853

    Article  PubMed  Google Scholar 

  33. Paez-Ribes M, González-Gualda E, Doherty GJ, Muñoz-Espín D (2019) Targeting senescent cells in translational medicine. EMBO Mol Med 11(12):e10234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zawistowski JS, Stalheim L, Uhlik MT, Abell AN, Ancrile BB, Johnson GL et al (2005) CCM1 and CCM2 protein interactions in cell signaling: implications for cerebral cavernous malformations pathogenesis. Hum Mol Genet 14(17):2521–2531

    Article  CAS  PubMed  Google Scholar 

  35. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57(1):289–300

    Google Scholar 

  36. Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75(1):685–705

    Article  CAS  PubMed  Google Scholar 

  37. Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M (2017) Unmasking transcriptional heterogeneity in senescent cells. Curr Biol 27(17):2652–2660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Casella G, Munk R, Kim KM, Piao Y, De S, Abdelmohsen K et al (2019) Transcriptome signature of cellular senescence. Nucleic Acids Res 47:7294–7305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, Criscione SW et al (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566(7742):73–78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ly DH, Lockhart DJ, Lerner RA, Schultz PG (2000) Mitotic misregulation and human aging. Science 287(5462):2486–2492

    Article  CAS  PubMed  Google Scholar 

  41. Matjusaitis M, Chin G, Sarnoski EA, Stolzing A (2016) Biomarkers to identify and isolate senescent cells. Ageing Res Rev 29:1–12

    Article  CAS  PubMed  Google Scholar 

  42. Faget DV, Ren Q, Stewart SA (2019) Unmasking senescence: context-dependent effects of SASP in cancer. Nat Rev Cancer 19:439–453

    Article  CAS  PubMed  Google Scholar 

  43. Coppé J-P, Desprez P-Y, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol Mech Dis 5(1):99–118

    Article  CAS  Google Scholar 

  44. Chan AC, Drakos SG, Ruiz OE, Smith AC, Gibson CC, Ling J et al (2011) Mutations in 2 distinct genetic pathways result in cerebral cavernous malformations in mice. J Clin Invest 121(5):1871–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shi C, Shenkar R, Du H, Duckworth E, Raja H, Batjer HH et al (2009) Immune response in human cerebral cavernous malformations. Stroke 40(5):1659–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lampugnani MG, Orsenigo F, Rudini N, Maddaluno L, Boulday G, Chapon F et al (2010) CCM1 regulates vascular-lumen organization by inducing endothelial polarity. J Cell Sci 123(Pt 7):1073–1080

    Article  CAS  PubMed  Google Scholar 

  47. Rhinn M, Ritschka B, Keyes WM (2019) Cellular senescence in development, regeneration and disease. Development 146(20):151837

    Article  CAS  Google Scholar 

  48. Cheon SY, Kim H, Rubinsztein DC, Lee JE (2019) Autophagy, cellular aging and age-related human diseases. Exp Neurobiol 28:643–657

    Article  PubMed  PubMed Central  Google Scholar 

  49. Salazar G (2018) NADPH oxidases and mitochondria in vascular senescence. Int J Mol Sci 19(5):1327

    Article  PubMed Central  CAS  Google Scholar 

  50. Freund A, Patil CK, Campisi J (2011) p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J 30(8):1536–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yuedi D, Houbao L, Pinxiang L, Hui W, Min T, Dexiang Z (2020) KLF2 induces the senescence of pancreatic cancer cells by cooperating with FOXO4 to upregulate p21. Exp Cell Res 388(1):111784

    Article  PubMed  CAS  Google Scholar 

  52. Xu Q, Liu M, Zhang J, Xue L, Zhang G, Hu C et al (2016) Overexpression of KLF4 promotes cell senescence through microRNA-203-survivin-p21 pathway. Oncotarget 7(37):60290–60302

    Article  PubMed  PubMed Central  Google Scholar 

  53. Balistreri CR, Ruvolo G, Lio D, Madonna R (2017) Toll-like receptor-4 signaling pathway in aorta aging and diseases: its double nature. J Mol Cell Cardiol 110:38–53

    Article  CAS  PubMed  Google Scholar 

  54. Koskimäki J, Polster SP, Li Y, Romanos S, Srinath A, Zhang D et al (2020) Common transcriptome, plasma molecules, and imaging signatures in the aging brain and a Mendelian neurovascular disease, cerebral cavernous malformation. GeroScience 42(5):1351–1363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ren AA, Snellings DA, Su YS, Hong CC, Castro M, Tang AT et al (2021) PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism. Nature 594(7862):271–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guerrero A, Iglesias C, Raguz S, Floridia E, Gil J, Pombo CM et al (2015) The cerebral cavernous malformation 3 gene is necessary for senescence induction. Aging Cell 14(2):274–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gilbert HTJ, Swift J (2019) The consequences of ageing, progeroid syndromes and cellular senescence on mechanotransduction and the nucleus. Exp Cell Res 378:98–103

    Article  CAS  PubMed  Google Scholar 

  58. Kümper S, Mardakheh FK, McCarthy A, Yeo M, Stamp GW, Paul A et al (2016) Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis. Elife 5:e12994

    Article  PubMed  Google Scholar 

  59. Zhang J, Rigamonti D, Dietz HC, Clatterbuck RE (2007) Interaction between krit1 and malcavernin: Implications for the pathogenesis of cerebral cavernous malformations. Neurosurgery 60(2):353–359

    Article  PubMed  Google Scholar 

  60. Glading A, Han J, Stockton RA, Ginsberg MH (2007) KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell cell junctions. J Cell Biol 179(2):247–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tanaka T, Nishimura D, Wu R-C, Amano M, Iso T, Kedes L et al (2006) Nuclear Rho kinase, ROCK2, targets p300 acetyltransferase. J Biol Chem 281(22):15320–15329

    Article  CAS  PubMed  Google Scholar 

  62. Chen W, Nyuydzefe MS, Weiss JM, Zhang J, Waksal SD, Zanin-Zhorov A (2018) ROCK2, but not ROCK1 interacts with phosphorylated STAT3 and co-occupies TH17/TFH gene promoters in TH17-activated human T cells. Sci Rep 8(1):16636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Vaeyens MM, Jorge-Peñas A, Barrasa-Fano J, Steuwe C, Heck T, Carmeliet P et al (2020) Matrix deformations around angiogenic sprouts correlate to sprout dynamics and suggest pulling activity. Angiogenesis 23(3):315–324

    Article  CAS  PubMed  Google Scholar 

  64. Finch-Edmondson M, Sudol M (2016) Framework to function: mechanosensitive regulators of gene transcription. Cell Mol Biol Lett 21:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Torrino S, Roustan F, Kaminski L, Bertero T, Pisano S, Ambrosetti D et al (2019) UBTD1 is a mechano-regulator controlling cancer aggressiveness. EMBO Rep 20(4):e46570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A et al (2004) KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med 199(10):1305–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Min-Jia Z, Ai X, Teng J, Wang Y, Wang B, Zhang X (2016) p21 and CK2 interaction-mediated HDAC2 phosphorylation modulates KLF4 acetylation to regulate bladder cancer cell proliferation. Tumor Biol 37(6):8293–8304

    Article  CAS  Google Scholar 

  68. Varet H, Brillet-Guéguen L, Coppée JY, Dillies MA (2016) SARTools: A DESeq2- and edgeR-based R pipeline for comprehensive differential analysis of RNA-Seq data. PLoS ONE 11(6):e0157022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestkeeper–excel-based tool using pair-wise correlations. Biotechnol Lett 26(6):509–515

    Article  CAS  PubMed  Google Scholar 

  72. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sharma VP, Entenberg D, Condeelis J (2013) High-resolution live-cell imaging and time-lapse microscopy of invadopodium dynamics and tracking analysis. Methods Mol Biol 1046:343–357

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ranga A, Gobaa S, Okawa Y, Mosiewicz K, Negro A, Lutolf MP (2014) 3D niche microarrays for systems-level analyses of cell fate. Nat Commun 5:4324

    Article  CAS  PubMed  Google Scholar 

  75. Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB et al (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci USA 100(9):5413–5418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Most of the computations presented in this paper were performed using the CIMENT/GRICAD infrastructure (https://gricad.univ-grenoble-alpes.fr). The authors acknowledge the EpiMed core facility (http://epimed.univ-grenoble-alpes.fr) for their support and assistance in this work. This study was supported by the ANR (ANR-17-CE13-022), the Fondation pour la Recherche Médicale FRM (DEQ20170336702), the International Emerging Action CNRS, the association Espoir contre le Cancer Isère, the FWO project G087018N, infrastructure Grant I009718N, Hercules Foundation (G0H6316N), the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant Agreement No. 308223). PhD fellowship grants were supported by ANR and FRM to D.R.V. and FWO (1S68818N) to A.S. We would like to thank Claudia Röedel, Béatrice Eymin and Gwénola Boulday for sharing ideas and reagents; Salim Seyfried for critical reading of the manuscript; and Christiane Oddou for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

DRV, AS, HVO, EF conceived the project and designed experiments; DRV, AS, SM, EP, EF performed experiments; FC, DRV, EF analysed the bioinformatical data; OD contributed to scientific discussion; PR provided reagents; CAR, EF and HVO provided funding; EF wrote the manuscript which has been revised by all authors.

Corresponding author

Correspondence to Eva Faurobert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sandra Manet—deceased

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vannier, D.R., Shapeti, A., Chuffart, F. et al. CCM2-deficient endothelial cells undergo a ROCK-dependent reprogramming into senescence-associated secretory phenotype. Angiogenesis 24, 843–860 (2021). https://doi.org/10.1007/s10456-021-09809-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-021-09809-2

Keywords

Navigation