Skip to main content

Advertisement

Log in

Angiogenic responses in a 3D micro-engineered environment of primary endothelial cells and pericytes

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Angiogenesis plays a key role in the pathology of diseases such as cancer, diabetic retinopathy, and age-related macular degeneration. Understanding the driving forces of endothelial cell migration and organization, as well as the time frame of these processes, can elucidate mechanisms of action of important pathological pathways. Herein, we have developed an organ-specific microfluidic platform recapitulating the in vivo angiogenic microenvironment by co-culturing mouse primary brain endothelial cells with brain pericytes in a three-dimensional (3D) collagen scaffold. As a proof of concept, we show that this model can be used for studying the angiogenic process and further comparing the angiogenic properties between two different common inbred mouse strains, C57BL/6J and 129S1/SvlmJ. We further show that the newly discovered angiogenesis-regulating gene Padi2 promotes angiogenesis through Dll4/Notch1 signaling by an on-chip mechanistic study. Analysis of the interplay between primary endothelial cells and pericytes in a 3D microfluidic environment assists in the elucidation of the angiogenic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article (and its supplementary information files), and are available from the corresponding author upon request.

References

  1. Craig LE, Spelman JP, Strandberg JD, Zink MC (1998) Endothelial cells from diverse tissues exhibit differences in growth and morphology. Microvasc Res 55(1):65–76. https://doi.org/10.1006/mvre.1997.2045

    Article  CAS  PubMed  Google Scholar 

  2. Blanco R, Gerhardt H (2013) VEGF and Notch in tip and stalk cell selection. Cold Spring Harbor Perspect Med 3(1):a006569. https://doi.org/10.1101/cshperspect.a006569

    Article  CAS  Google Scholar 

  3. Vossenaar ER, Zendman AJ, van Venrooij WJ, Pruijn GJ (2003) PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. BioEssays 25(11):1106–1118. https://doi.org/10.1002/bies.10357

    Article  CAS  PubMed  Google Scholar 

  4. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676. https://doi.org/10.1038/nm0603-669

    Article  CAS  PubMed  Google Scholar 

  5. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177. https://doi.org/10.1083/jcb.200302047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lobov I, Mikhailova N (2018) The role of Dll4/Notch signaling in normal and pathological ocular angiogenesis: Dll4 controls blood vessel sprouting and vessel remodeling in normal and pathological conditions. J Ophthalmol 2018:3565292. https://doi.org/10.1155/2018/3565292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137(2):216–233. https://doi.org/10.1016/j.cell.2009.03.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Benedito R, Roca C, Sorensen I, Adams S, Gossler A, Fruttiger M, Adams RH (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137(6):1124–1135. https://doi.org/10.1016/j.cell.2009.03.025

    Article  CAS  PubMed  Google Scholar 

  9. Ziółkowska K, Kwapiszewski R, Brzózka Z (2011) Microfluidic devices as tools for mimicking the in vivo environment. New J Chem 35(5):979–990. https://doi.org/10.1039/C0NJ00709A

    Article  Google Scholar 

  10. Bajaj P, Schweller RM, Khademhosseini A, West JL, Bashir R (2014) 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng 16:247–276. https://doi.org/10.1146/annurev-bioeng-071813-105155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bai J, Wang C (2020) Organoids and microphysiological systems: new tools for ophthalmic drug discovery. Front Pharmacol. https://doi.org/10.3389/fphar.2020.00407

    Article  PubMed  PubMed Central  Google Scholar 

  12. Avendano A, Cortes-Medina M, Song JW (2019) Application of 3-D microfluidic models for studying mass transport properties of the tumor interstitial matrix. Front Bioeng Biotechnol 7:6. https://doi.org/10.3389/fbioe.2019.00006

    Article  PubMed  PubMed Central  Google Scholar 

  13. Motherwell J, Murfee WL (2018) Modelling microvascular pathology. Nat Biomed Eng 2(6):349–350. https://doi.org/10.1038/s41551-018-0251-9

    Article  PubMed  Google Scholar 

  14. van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T (2015) Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol 35:118–126. https://doi.org/10.1016/j.copbio.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  15. Kamm RD, Bashir R, Arora N, Dar RD, Gillette MU, Griffith LG, Kemp ML, Kinlaw K, Levin M, Martin AC, McDevitt TC, Nerem RM, Powers MJ, Saif TA, Sharpe J, Takayama S, Takeuchi S, Weiss R, Ye K, Yevick HG, Zaman MH (2018) Perspective: the promise of multi-cellular engineered living systems. APL Bioeng 2(4):040901. https://doi.org/10.1063/1.5038337

    Article  PubMed  PubMed Central  Google Scholar 

  16. Andrejecsk JW, Hughes CCW (2018) Engineering perfused microvascular networks into microphysiological systems platforms. Curr Opin Biomed Eng 5:74–81. https://doi.org/10.1016/j.cobme.2018.02.002

    Article  Google Scholar 

  17. Haase K, Kamm RD (2017) Advances in on-chip vascularization. Regen Med 12(3):285–302. https://doi.org/10.2217/rme-2016-0152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yeon JH, Ryu HR, Chung M, Hu QP, Jeon NL (2012) In vitro formation and characterization of a perfusable three-dimensional tubular capillary network in microfluidic devices. Lab Chip 12(16):2815–2822. https://doi.org/10.1039/C2LC40131B

    Article  CAS  PubMed  Google Scholar 

  19. van Duinen V, Zhu D, Ramakers C, van Zonneveld AJ, Vulto P, Hankemeier T (2019) Perfused 3D angiogenic sprouting in a high-throughput in vitro platform. Angiogenesis 22(1):157–165. https://doi.org/10.1007/s10456-018-9647-0

    Article  CAS  PubMed  Google Scholar 

  20. Zeinali S, Bichsel CA, Hobi N, Funke M, Marti TM, Schmid RA, Guenat OT, Geiser T (2018) Human microvasculature-on-a chip: anti-neovasculogenic effect of nintedanib in vitro. Angiogenesis 21(4):861–871. https://doi.org/10.1007/s10456-018-9631-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bai J, Adriani G, Dang TM, Tu TY, Penny HX, Wong SC, Kamm RD, Thiery JP (2015) Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and beta2 integrin interactions. Oncotarget 6(28):25295–25307. https://doi.org/10.18632/oncotarget.4716

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bai J, Tu TY, Kim C, Thiery JP, Kamm RD (2015) Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment. Oncotarget 6(34):36603–36614. https://doi.org/10.18632/oncotarget.5464

    Article  PubMed  PubMed Central  Google Scholar 

  23. Aref AR, Huang RY, Yu W, Chua KN, Sun W, Tu TY, Bai J, Sim WJ, Zervantonakis IK, Thiery JP, Kamm RD (2013) Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Integr Biol 5(2):381–389. https://doi.org/10.1039/c2ib20209c

    Article  CAS  Google Scholar 

  24. Horbach S, Halffman W (2017) The ghosts of HeLa: How cell line misidentification contaminates the scientific literature. PLoS ONE 12(10):e0186281. https://doi.org/10.1371/journal.pone.0186281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Perez RA, Mestres G (2016) Role of pore size and morphology in musculo-skeletal tissue regeneration. Mater Sci Eng C 61:922–939. https://doi.org/10.1016/j.msec.2015.12.087

    Article  CAS  Google Scholar 

  26. Rohan RM, Fernandez A, Udagawa T, Yuan J, D'Amato RJ (2000) Genetic heterogeneity of angiogenesis in mice. FASEB J 14(7):871–876

    Article  CAS  PubMed  Google Scholar 

  27. Khajavi M, Zhou Y, Birsner AE, Bazinet L, Rosa Di Sant A, Schiffer AJ, Rogers MS, Krishnaji ST, Hu B, Nguyen V, Zon L, D'Amato RJ (2017) Identification of Padi2 as a novel angiogenesis-regulating gene by genome association studies in mice. PLoS Genet 13(6):e1006848. https://doi.org/10.1371/journal.pgen.1006848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McElwee JL, Mohanan S, Griffith OL, Breuer HC, Anguish LJ, Cherrington BD, Palmer AM, Howe LR, Subramanian V, Causey CP, Thompson PR, Gray JW, Coonrod SA (2012) Identification of PADI2 as a potential breast cancer biomarker and therapeutic target. BMC Cancer 12:500. https://doi.org/10.1186/1471-2407-12-500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Koch MW, Metz LM, Kovalchuk O (2013) Epigenetic changes in patients with multiple sclerosis. Nat Rev Neurol 9(1):35–43. https://doi.org/10.1038/nrneurol.2012.226

    Article  CAS  PubMed  Google Scholar 

  30. Tigges U, Welser-Alves JV, Boroujerdi A, Milner R (2012) A novel and simple method for culturing pericytes from mouse brain. Microvasc Res 84(1):74–80. https://doi.org/10.1016/j.mvr.2012.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Perriere N, Demeuse P, Garcia E, Regina A, Debray M, Andreux JP, Couvreur P, Scherrmann JM, Temsamani J, Couraud PO, Deli MA, Roux F (2005) Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood-brain barrier-specific properties. J Neurochem 93(2):279–289. https://doi.org/10.1111/j.1471-4159.2004.03020.x

    Article  CAS  PubMed  Google Scholar 

  32. Song JW, Munn LL (2011) Fluid forces control endothelial sprouting. Proc Natl Acad Sci USA 108(37):15342–15347. https://doi.org/10.1073/pnas.1105316108

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen MB, Hajal C, Benjamin DC, Yu C, Azizgolshani H, Hynes RO, Kamm RD (2018) Inflamed neutrophils sequestered at entrapped tumor cells via chemotactic confinement promote tumor cell extravasation. Proc Natl Acad Sci USA 115(27):7022–7027. https://doi.org/10.1073/pnas.1715932115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ludovica V. AS, Zdenko H., Rabih M. (2017) Mechanisms of histone modifications. In: Handbook of epigenetics (2nd edn). Academic Press, pp 25–46. https://doi.org/10.1016/B978-0-12-805388-1.00003-1

  35. Thurston G, Kitajewski J (2008) VEGF and Delta-Notch: interacting signalling pathways in tumour angiogenesis. Br J Cancer 99(8):1204–1209. https://doi.org/10.1038/sj.bjc.6604484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang X, Bolt M, Guertin MJ, Chen W, Zhang S, Cherrington BD, Slade DJ, Dreyton CJ, Subramanian V, Bicker KL, Thompson PR, Mancini MA, Lis JT, Coonrod SA (2012) Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor alpha target gene activation. Proc Natl Acad Sci USA 109(33):13331–13336. https://doi.org/10.1073/pnas.1203280109

    Article  PubMed  PubMed Central  Google Scholar 

  37. Falcao AM, Meijer M, Scaglione A, Rinwa P, Agirre E, Liang J, Larsen SC, Heskol A, Frawley R, Klingener M, Varas-Godoy M, Raposo A, Ernfors P, Castro DS, Nielsen ML, Casaccia P, Castelo-Branco G (2019) PAD2-mediated citrullination contributes to efficient oligodendrocyte differentiation and myelination. Cell Rep 27(4):1090–1102. https://doi.org/10.1016/j.celrep.2019.03.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ostergaard L, Engedal TS, Moreton F, Hansen MB, Wardlaw JM, Dalkara T, Markus HS, Muir KW (2016) Cerebral small vessel disease: capillary pathways to stroke and cognitive decline. J Cereb Blood Flow Metab 36(2):302–325. https://doi.org/10.1177/0271678X15606723

    Article  CAS  PubMed  Google Scholar 

  39. Bodnar RJ, Rodgers ME, Chen WC, Wells A (2013) Pericyte regulation of vascular remodeling through the CXC receptor 3. Arterioscler Thromb Vasc Biol 33(12):2818–2829. https://doi.org/10.1161/ATVBAHA.113.302012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 7(4):452–464. https://doi.org/10.1215/S1152851705000232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Darrah E, Rosen A, Giles JT, Andrade F (2012) Peptidylarginine deiminase 2, 3 and 4 have distinct specificities against cellular substrates: novel insights into autoantigen selection in rheumatoid arthritis. Ann Rheum Dis 71(1):92–98. https://doi.org/10.1136/ard.2011.151712

    Article  CAS  PubMed  Google Scholar 

  42. Wang L, Song G, Zhang X, Feng T, Pan J, Chen W, Yang M, Bai X, Pang Y, Yu J, Han J, Han B (2017) PADI2-mediated citrullination promotes prostate cancer progression. Can Res 77(21):5755–5768. https://doi.org/10.1158/0008-5472.CAN-17-0150

    Article  CAS  Google Scholar 

  43. Moscarello MA, Mastronardi FG, Wood DD (2007) The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis. Neurochem Res 32(2):251–256. https://doi.org/10.1007/s11064-006-9144-5

    Article  CAS  PubMed  Google Scholar 

  44. Guarani V, Deflorian G, Franco CA, Kruger M, Phng LK, Bentley K, Toussaint L, Dequiedt F, Mostoslavsky R, Schmidt MHH, Zimmermann B, Brandes RP, Mione M, Westphal CH, Braun T, Zeiher AM, Gerhardt H, Dimmeler S, Potente M (2011) Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473(7346):234–238. https://doi.org/10.1038/nature09917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD, Wiegand SJ (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA 104(9):3219–3224. https://doi.org/10.1073/pnas.0611206104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bai J, Fu H, Bazinet L, Birsner AE, D'Amato RJ (2020) A method for developing novel 3D cornea-on-a-chip using primary murine corneal epithelial and endothelial cells. Front Pharmacol. https://doi.org/10.3389/fphar.2020.00453

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported, in part, by the NIH National Eye Institute. Award Number R01EY012726-12 (to RJD).

Author information

Authors and Affiliations

Authors

Contributions

JB, RJD, MK, HJF, STK, and AEB contributed to the design and implementation of the research, JB, LFS, and LB performed the experiments, and JB, RJD, RDK, and MK contributed to the interpretation of the results and the preparation of the manuscript. All authors provided critical feedback and helped shape the research, analysis, and manuscript.

Corresponding author

Correspondence to Jing Bai.

Ethics declarations

Conflict of interest

The author(s) declare(s) that there is no conflict of interest regarding the publication of this article.

Ethics approval

All animal studies were conducted in compliance with the protocols approved by the Institutional Animal Care and Use Committee of Boston Children’s Hospital (approval number 15-08-2998R for mouse experiments).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10671 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, J., Khajavi, M., Sui, L. et al. Angiogenic responses in a 3D micro-engineered environment of primary endothelial cells and pericytes. Angiogenesis 24, 111–127 (2021). https://doi.org/10.1007/s10456-020-09746-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-020-09746-6

Keywords

Navigation