Skip to main content

Advertisement

Log in

Preclinical impact of high dose intermittent antiangiogenic tyrosine kinase inhibitor pazopanib in intrinsically resistant tumor models

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Antiangiogenic tyrosine kinase inhibitors (TKIs) target vascular endothelial growth factor receptors and other receptor tyrosine kinases. As a result of toxicity, the clinical failures or the modest benefits associated with antiangiogenic TKI therapy may be related in some cases to suboptimal drug dosing and scheduling, thereby facilitating resistance. Most antiangiogenic TKIs, including pazopanib, are administered on a continuous daily basis. Here, instead, we evaluated the impact of increasing the dose and administering the drug intermittently. The rationale is that using such protocols, antitumor efficacy could be enhanced by direct tumor cell targeting effects in addition to inhibiting tumor angiogenesis. To test this, we employed two human tumor xenograft models, both of which manifest intrinsic resistance to pazopanib when it is administered continuously: the VHL-wildtype SN12-PM6-1 renal cell carcinoma (RCC) and the metastatic MDA-MB-231/LM2-4 variant breast cancer cell line, when treated as distant metastases. We evaluated four different doses and schedules of pazopanib in the context of primary tumors and advanced metastatic disease, in both models. The RCC model was not converted to drug sensitivity using the intermittent protocol. Using these protocols did not enhance the efficacy when treating primary LM2-4 tumors. However, one of the high-dose intermittent pazopanib protocols increased median survival when treating advanced metastatic disease. In conclusion, these results overall suggest that primary tumors showing sensitivity to continuous pazopanib treatment may predict response to this drug when given at high doses intermittently in the context of advanced metastatic disease, that are otherwise resistant to the conventional protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jason GC, Kerbel R, Ellis LM, Harris AL (2016) Antiangiogenic therapy in oncology: current status and future directions. Lancet 388:518–529

    Article  Google Scholar 

  2. Motzer R, Hutson TE, Olsen MR et al (2012) Randomized phase II trial of sunitinib on an intermittent versus continuous dosing schedule as first-line therapy for advanced renal cell carcinoma. J Clin Oncol 30:1371–1377

    Article  CAS  Google Scholar 

  3. Demetri GD, Reichardt P, Kang YK et al (2013) Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib: an international, multicentre, prospective, randomised, placebo controlled phase 3 trial (GRID). Lancet 381:295–302

    Article  CAS  Google Scholar 

  4. Grothey A, Van Cutsem E, Sobrero A et al (2013) Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381:303–312

    Article  CAS  Google Scholar 

  5. Reck M, Kaiser R, Mellemgaard A et al (2014) Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomized controlled trial. Lancet Oncol 15:143–155

    Article  CAS  Google Scholar 

  6. Rini BI, Melichar B, Ueda T et al (2013) Axitinib with or without dose titration for first-line metastatic renal-cell carcinoma: a randomised double-blind phase 2 trial. Lancet Oncol 14:1233–1242

    Article  CAS  Google Scholar 

  7. Bjarnason GA, Khalil B, Hudson JM et al (2014) Outcomes in patients with metastatic renal cell carcinoma treated with individualized sunitinib therapy: correlation with dynamic microbubble ultrasound data and review of the literature. Urol Oncol 32:480–487

    Article  CAS  Google Scholar 

  8. Maráz A, Cserháti A, Uhercsák G et al (2018) Dose escalation can maximize therapeutic potential of sunitinib in patients with metastatic renal cell carcinoma. BioMed Cent Cancer 18:296. https://doi.org/10.1186/s12885-018-4209-9

    Article  Google Scholar 

  9. Canu B, Fioravanti A, Orlandi P et al. (2011) Irinotecan synergistically enhances the antiproliferative and proapoptotic effects of axitinib in vitro and in vivo and improves its anticancer activity in vivo. Neoplasia 13:217–229

    Article  CAS  Google Scholar 

  10. Gotink KJ, Broxterman HJ, Labots M et al (2011) Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance. Clin Cancer Res 17:7337–7346

    Article  CAS  Google Scholar 

  11. Santoni M, Amantini C, Morelli MB et al (2013) Pazopanib and sunitinib trigger autophagic and non-autophagic death of bladder tumor cells. Br J Cancer 109:1040–1050

    Article  CAS  Google Scholar 

  12. Di Desidero T, Xu P, Man S, Bocci G, Kerbel RS (2015) Potent efficacy of metronomic topotecan and pazopanib combination therapy in preclinical models of primary or late stage metastatic triple-negative breast cancer. Oncotarget 6:42396–42410

    Article  Google Scholar 

  13. Jedeszko C, Paez-Ribes M, Di Desidero T et al. (2015) Postsurgical adjuvant or metastatic renal cell carcinoma therapy models reveal potent anti-tumor activity of metronomic oral topotecan with pazopanib. Sci Transl Med 7:282ra50 https://doi.org/10.1126/scitranslmed.3010722

    Article  CAS  PubMed  Google Scholar 

  14. Kumar R, Knick VB, Rudolph SK et al (2007) Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther 6:2012–2021

    Article  CAS  Google Scholar 

  15. Gotink KJ, Broxterman HJ, Honeywell RJ et al (2014) Acquired tumor cell resistance to sunitinib causes resistance in a HT-29 human colon cancer xenograft mouse model without affecting sunitinib biodistribution or the tumor microvasculature. Oncoscience 1:844–852

    Article  Google Scholar 

  16. Rovithi M, de Haas RR, Honeywell RJ et al (2016) Alternative scheduling of pulsatile, high dose sunitinib efficiently suppresses tumor growth. J Exp Clin Cancer Res 35:138. https://doi.org/10.1186/s13046-016-0411-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang X, Zhang L, Goldberg SN et al (2011) High dose intermittent sorafenib shows improved efficacy over conventional continuous dose in renal cell carcinoma. J Transl Med 9:220. https://doi.org/10.1186/1479-5876-9-220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Buczek M, Escudier B, Bartnik E, Szczylik C, Czarnecka A (2014) Resistance to tyrosine kinase inhibitors in clear cell renal cell carcinoma: from patient’s bed to molecular mechanisms. Biochem Biophys Acta 1845:31–41

    CAS  PubMed  Google Scholar 

  19. Rini B, Atkins M (2009) Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol 10:992–1000

    Article  CAS  Google Scholar 

  20. Escudier B, Szczylik C, Hutson TE et al (2009) Randomized phase II trial of first-line treatment with sorafenib versus interferon alfa-2a in patients with metastatic renal cell carcinoma. J Clin Oncol 27:1280–1289

    Article  CAS  Google Scholar 

  21. Tang T, Man S, Xu P et al (2010) Development of a resistance-like phenotype to sorafenib by human hepatocellular carcinoma cells is reversible and can be delayed by metronomic UFT chemotherapy. Neoplasia 12:928–940

    Article  CAS  Google Scholar 

  22. Zama I, Hutson TE, Elson P et al (2010) Sunitinib rechallenge in metastatic renal cell carcinoma patients. Cancer 116:5400–5406

    Article  CAS  Google Scholar 

  23. Mancuso A, Di Paola ED, Leone A et al (2011) Phase II escalation study of sorafenib in patients with metastatic renal cell carcinoma who have been previously treated with anti-angiogenic treatment. Br J Urol Int 109:200–206

    Article  Google Scholar 

  24. Amato R, Zhai J, Willis J, Saxena S, DeFoe M (2012) A phase II trial of intrapatient dose-escalated sorafenib in patients with metastatic renal cell carcinoma. Clin Genitourin Cancer 10:153–158

    Article  Google Scholar 

  25. Kuczynski E, Lee CR, Man S, Chen E, Kerbel RS (2015) Effects of sorafenib dose on acquired reversible resistance and toxicity in hepatocellular carcinoma. Can Res 75:1–10

    Article  Google Scholar 

  26. Ornstein MC, Wood L, Elson P et al (2017) Clinical effect of dose escalation after disease progression in patients with metastatic renal cell carcinoma. Clin Genitourin Cancer 15:e275-280

    Article  Google Scholar 

  27. Rini B, Escudier B, Tomczak P et al (2011) Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet 378:1931–1939

    Article  CAS  Google Scholar 

  28. Porta C, Powles T (2012) Sequential therapy in metastatic renal cell carcinoma: what comes next? Med Oncol 29:1914–1915

    Article  Google Scholar 

  29. Munoz R, Man S, Shaked Y et al (2006) Highly efficacious nontoxic preclinical treatment for advanced metastatic breast cancer using combination oral UFT-cyclophosphamide metronomic chemotherapy. Can Res 66:3301–3386

    Google Scholar 

  30. Barrios CH, Liu MC, Lee SC et al (2010) Phase III randomized trial of sunitinib versus capecitabine in patients with previously treated HER2-negative advanced breast cancer. Breast Cancer Res Treat 121:121–131

    Article  CAS  Google Scholar 

  31. Robert NJ, Saleh MN, Paul D et al (2011) Sunitinib plus paclitaxel versus bevacizumab plus paclitaxel for first-line treatment of patients with advanced breast cancer: a phase III, randomized, open-label trial. Clin Breast Cancer 11:82–92

    Article  CAS  Google Scholar 

  32. Bergh J, Bondarenko IM, Lichinitser MR et al (2012) First-line treatment of advanced breast cancer with sunitinib in combination with docetaxel versus docetaxel alone: results of a prospective, randomized phase III study. J Clin Oncol 30:921–929

    Article  CAS  Google Scholar 

  33. Crown JP, Diéras V, Staroslawska E et al (2013) Phase III trial of sunitinib in combination with capecitabine versus capecitabine monotherapy for the treatment of patients with pretreated metastatic breast cancer. J Clin Oncol 31:2870–2878

    Article  CAS  Google Scholar 

  34. Guerin E, Man S, Xu P, Kerbel RS (2013) A model of postsurgical advanced metastatic breast cancer more accurately replicates the clinical efficacy of antiangiogenic drugs. Can Res 73:2743–2748

    Article  CAS  Google Scholar 

  35. Bridgeman VL, Vermeulen PB, Foo S et al (2017) Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis. J Pathol 241:362–374

    Article  CAS  Google Scholar 

  36. Naito S, von Eschenbach AC, Giavazzi R, Fidler IJ (1986) Growth and metastasis of tumor cells isolated from a human renal cell carcinoma implanted into different organs of nude mice. Can Res 46:4109–4115

    CAS  Google Scholar 

  37. Hashimoto K, Man S, Xu P et al (2010) Potent preclinical impact of metronomic low-dose oral topotecan combined with the antiangiogenic drug pazopanib for the treatment of ovarian cancer. Mol Cancer Ther 9:996–1006

    Article  CAS  Google Scholar 

  38. Suwaki N, Vanhecke E, Atkins KM et al (2011) A HIF-regulated VHL-PTP1B-Src signaling axis identifies a therapeutic target in renal cell carcinoma. Sci Transl Med 3:85ra47. https://doi.org/10.1126/scitranslmed.3002004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ebos JML, Lee CR, Cruz-Munoz W et al (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239

    Article  CAS  Google Scholar 

  40. Chung A, Kowanetz M, Wu X et al (2012) Differential drug class-specific metastatic effects following treatment with a panel of angiogenesis inhibitors. J Pathol 227:404–416

    Article  CAS  Google Scholar 

  41. Bjarnason GA (2016) Can individualized sunitinib dose and schedule changes optimize outcomes for kidney cancer patients? Can Urol Assoc J 10(11-12Supl7):S252–S255

    Article  Google Scholar 

  42. Kaiser J (2017) When less is more. Science 355:1144–1146

    Article  CAS  Google Scholar 

  43. Ornstein MC, Wood LS, Elson P et al (2017) A phase II study of intermittent sunitinib in previously untreated patients with metastatic renal cell carcinoma. J Clin Oncol 35:1764–1769

    Article  CAS  Google Scholar 

  44. Rovithi M, Verheul HMW (2017) Pulsatile high-dose treatment with antiangiogenic tyrosine kinase inhibitors improves clinical antitumor activity. Angiogenesis 20:287–289

    Article  Google Scholar 

  45. Huo L, Sugimura J, Tretiakova MS et al (2005) C-kit expression in renal oncocytomas and chromophobe renal cell carcinomas. Hum Pathol 36:262–268

    Article  CAS  Google Scholar 

  46. Brown RE, Lun M, Prichard JW, Blasick TM, Zhang PL (2004) Morphoproteomic and pharmacoproteomic correlates in hormone-receptor-negative breast carcinoma cell lines. Ann Clin Lab Sci 34:251–262

    CAS  PubMed  Google Scholar 

  47. Anastassiadis T, Deacon SW, Devarajan K, Ma H, Peterson JR (2011) Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat Biotechnol 29:1039–1045

    Article  CAS  Google Scholar 

  48. Sánchez-Bailón MP, Calcabrini A, Gómez-Domínguez D et al (2012) Src kinases catalytic activity regulates proliferation, migration and invasiveness of MDA-MB-231 breast cancer cells. Cell Signal 24:1276–1286

    Article  Google Scholar 

  49. Paez-Ribes M, Allen E, Hudock J et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231

    Article  CAS  Google Scholar 

  50. Paez-Ribes M, Man S, Xu P, Kerbel RS (2015) Potential proinvasive or metastatic effects of preclinical antiangiogenic therapy are prevented by concurrent chemotherapy. Clin Cancer Res 21:5488–5498

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from Worldwide Cancer Research. We thank Cassandra Cheng for her excellent secretarial assistance. ERN was supported by a Connaught Scholarship and a GSEF Scholarship from the University of Toronto, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Kerbel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reguera-Nuñez, E., Man, S., Xu, P. et al. Preclinical impact of high dose intermittent antiangiogenic tyrosine kinase inhibitor pazopanib in intrinsically resistant tumor models. Angiogenesis 21, 793–804 (2018). https://doi.org/10.1007/s10456-018-9623-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-018-9623-8

Keywords

Navigation