Skip to main content

Advertisement

Log in

Antiangiogenesis and medical therapy failure in intracranial atherosclerosis

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Intracranial atherosclerotic disease (ICAD) is one of the most common causes of stroke worldwide and the one with the worst prognosis. In this study, we assessed the hypothesis that the balance of circulating pro- and antiangiogenic factors plays a role in the evolution of the disease and can be used as a potential marker for the disease course and a target for treatment. Seventy-four patients with severe ICAD were enrolled in this prospective observational study, medically optimized, and followed for 6 months. Thirteen pro- and eight antiangiogenic factors were measured in the participants’ serum using a sandwich multiplex ELISA. Angiogenic profiles were calculated using principal component analysis. We tested the association between angiogenic profiles and recurring cerebrovascular events despite intensive medical therapy, disability at 6 months after enrollment, and angiographic neovascularization in patients who failed medical treatment and underwent indirect revascularization surgery. There is a strong association between a functionally antiangiogenic profile and recurrent stroke or TIA in patients with ICAD (OR = 7.2, CI 2.4–34.4). Multivariable regression analysis showed that this antiangiogenic profile was also associated with poor functional status after 6 months (p = 0.002), independent from other clinical features such as history of previous stroke, diabetes, and age. In patients who failed medical management and underwent indirect revascularization surgery, high endostatin and angiostatin levels were also associated with low angiographic neovascularization (p = 0.02). The results of this study point to the striking importance of antiangiogenesis as a determinant of ICAD patient prognosis and suggest a possible new target for therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gorelick PB, Wong KS, Bae H-J, Pandey DK (2008) Large artery intracranial occlusive disease a large worldwide burden but a relatively neglected frontier. Stroke 39(8):2396–2399

    Article  PubMed  Google Scholar 

  2. De Silva DA, Woon F-P, Lee M-P, Chen CP, Chang H-M, Wong M-C (2007) South Asian patients with ischemic stroke intracranial large arteries are the predominant site of disease. Stroke 38(9):2592–2594

    Article  PubMed  Google Scholar 

  3. Wong LK (2006) Global burden of intracranial atherosclerosis. Int J Stroke 1(3):158–159

    Article  PubMed  Google Scholar 

  4. Sacco RL, Kargman D, Gu Q, Zamanillo M (1995) Race-ethnicity and determinants of intracranial atherosclerotic cerebral infarction: the Northern Manhattan Stroke Study. Stroke 26(1):14–20

    Article  CAS  PubMed  Google Scholar 

  5. Derdeyn CP, Chimowitz MI, Lynn MJ, Fiorella D, Turan TN, Janis LS, Montgomery J, Nizam A, Lane BF, Lutsep HL (2014) Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): the final results of a randomised trial. Lancet 383(9914):333–341

    Article  PubMed  Google Scholar 

  6. Chimowitz MI, Lynn MJ, Howlett-Smith H, Stern BJ, Hertzberg VS, Frankel MR, Levine SR, Chaturvedi S, Kasner SE, Benesch CG, Sila CA, Jovin TG, Romano JG (2005) Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N Engl J Med 352(13):1305-1316. doi:352/13/1305 [pii] 10.1056/NEJMoa043033

  7. Wityk R, Lehman D, Klag M, Coresh J, Ahn H, Litt B (1996) Race and sex differences in the distribution of cerebral atherosclerosis. Stroke 27(11):1974

    Article  CAS  PubMed  Google Scholar 

  8. Chimowitz MI, Lynn MJ, Derdeyn CP, Turan TN, Fiorella D, Lane BF, Janis LS, Lutsep HL, Barnwell SL, Waters MF (2011) Stenting versus aggressive medical therapy for intracranial arterial stenosis. N Engl J Med 365:993–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Awad I, Furlan AJ, Little JR (1984) Changes in intracranial stenotic lesions after extracranial-intracranial bypass surgery. J Neurosurg 60(4):771–776

    Article  CAS  PubMed  Google Scholar 

  10. Powers WJ, Clarke WR, Grubb RL Jr, Videen TO, Adams HP Jr, Derdeyn CP (2011) Extracranial-intracranial bypass surgery for stroke prevention in hemodynamic cerebral ischemia. JAMA, J Am Med Assoc 306(18):1983–1992

    Article  CAS  Google Scholar 

  11. Arenillas JF, Alvarez-Sabin J, Montaner J, Rosell A, Molina CA, Rovira A, Ribo M, Sanchez E, Quintana M (2005) Angiogenesis in symptomatic intracranial atherosclerosis: predominance of the inhibitor endostatin is related to a greater extent and risk of recurrence. Stroke 36(1):92–97. doi:10.1161/01.STR.0000149617.65372.5d

    Article  PubMed  Google Scholar 

  12. Navarro-Sobrino M, Rosell A, Hernandez-Guillamon M, Penalba A, Boada C, Domingues-Montanari S, Ribo M, Alvarez-Sabin J, Montaner J (2011) A large screening of angiogenesis biomarkers and their association with neurological outcome after ischemic stroke. Atherosclerosis 216(1):205–211. doi:10.1016/j.atherosclerosis.2011.01.030

    Article  CAS  PubMed  Google Scholar 

  13. Massot A, Navarro-Sobrino M, Penalba A, Arenillas JF, Giralt D, Ribo M, Molina CA, Alvarez-Sabin J, Montaner J, Rosell A (2013) Decreased levels of angiogenic growth factors in intracranial atherosclerotic disease despite severity-related increase in endothelial progenitor cell counts. Cerebrovasc Dis 35(1):81–88. doi:10.1159/000346097

    Article  CAS  PubMed  Google Scholar 

  14. Gonzalez NR, Dusick JR, Connolly M, Bounni F, Martin NA, Van de Wiele B, Liebeskind DS, Saver JL (2015) Encephaloduroarteriosynangiosis for adult intracranial arterial steno-occlusive disease: long-term single-center experience with 107 operations. J Neurosurg. doi:10.3171/2014.10.JNS141426

    Google Scholar 

  15. Perren F, Horn P, Vajkoczy P, Schmiedek P, Meairs S (2005) Power Doppler imaging in detection of surgically induced indirect neoangiogenesis in adult moyamoya disease. J Neurosurg 103(5):869–872. doi:10.3171/jns.2005.103.5.0869

    Article  PubMed  Google Scholar 

  16. Sainani KL (2014) Introduction to principal components analysis. PMR 6(3):275–278. doi:10.1016/j.pmrj.2014.02.001

    Article  Google Scholar 

  17. Rajagopalan S, Mohler ER 3rd, Lederman RJ, Mendelsohn FO, Saucedo JF, Goldman CK, Blebea J, Macko J, Kessler PD, Rasmussen HS, Annex BH (2003) Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation 108(16):1933–1938. doi:10.1161/01.CIR.0000093398.16124.29

    Article  CAS  PubMed  Google Scholar 

  18. Abo-Auda W, Benza RL (2003) Therapeutic angiogenesis: review of current concepts and future directions. J Heart Lung Transpl 22(4):370–382. doi:10.1016/s1053-2498(02)00665-4

    Article  Google Scholar 

  19. Rajpathak SN, Wang T, Wassertheil-Smoller S, Strickler HD, Kaplan RC, McGinn AP, Wildman RP, Rosenbaum D, Rohan TE, Scherer PE, Cushman M, Ho GYF (2010) Hepatocyte growth factor and the risk of ischemic stroke developing among postmenopausal women: results from the women’s health initiative. Stroke 41(5):857–862. doi:10.1161/strokeaha.109.567719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen XY, Wong KS, Lam WW, Zhao HL, Ng HK (2008) Middle cerebral artery atherosclerosis: histological comparison between plaques associated with and not associated with infarct in a postmortem study. Cerebrovasc Dis 25(1–2):74–80. doi:10.1159/000111525

    Article  PubMed  Google Scholar 

  21. Date K, Matsumoto K, Shimura H, Tanaka M, Nakamura T (1997) HGF/NK4 is a speci¢c antagonist for pleiotrophic actions of hepatocyte growth factor. FEBS J 420:1–6

    Article  CAS  Google Scholar 

  22. Kuba K, Matsumoto K, Date K, Shimura H, Tanaka M, Nakamura T (2000) HGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice. Cancer Res 60:6737–6743

    CAS  PubMed  Google Scholar 

  23. Mizuno S, Nakamura T (2013) HGF-MET cascade, a key target for inhibiting cancer metastasis: the impact of NK4 discovery on cancer biology and therapeutics. Int J Mol Sci 14(1):888–919. doi:10.3390/ijms14010888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gonzalez NR, Liebeskind DS, Dusick JR, Mayor F, Saver J (2013) Intracranial arterial stenoses: current viewpoints, novel approaches, and surgical perspectives. Neurosurg Rev 36(2):175–184. doi:10.1007/s10143-012-0432-z discussion 184–175

    Article  PubMed  Google Scholar 

  25. Dusick JR, Liebeskind DS, Saver JL, Martin NA, Gonzalez NR (2012) Indirect revascularization for nonmoyamoya intracranial arterial stenoses: clinical and angiographic outcomes. J Neurosurg 117(1):94–102. doi:10.3171/2012.4.JNS111103

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the American Heart Association (12PILT12760011 and 14ISA20870000), the NIH (K23 NS079477-01A1), as well as the Stotter Chair Endowment to NRG. We are grateful to Robert Elashoff, PhD, for statistical revision, as well as the UCLA Stroke Center members (Neal Rao, Lucas Restrepo, Jason Hitman, and Neil Martin) and the Cedars Sinai Stroke Center members (Patrick Lyden, Konrad Schlick, and Shlee Song) for their support and continuous collaboration. Also, we warmly thank the research coordination team led by Antoinette Anderson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nestor R. Gonzalez.

Ethics declarations

Conflict of interest

The authors do not declare any competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Supplementary material 2 (TIFF 756 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, N.R., Liou, R., Kurth, F. et al. Antiangiogenesis and medical therapy failure in intracranial atherosclerosis. Angiogenesis 21, 23–35 (2018). https://doi.org/10.1007/s10456-017-9578-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-017-9578-1

Keywords

Navigation