Skip to main content
Log in

Prox1-GFP/Flt1-DsRed transgenic mice: an animal model for simultaneous live imaging of angiogenesis and lymphangiogenesis

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

The roles of angiogenesis in development, health, and disease have been studied extensively; however, the studies related to lymphatic system are limited due to the difficulty in observing colorless lymphatic vessels. But recently, with the improved technique, the relative importance of the lymphatic system is just being revealed. We bred transgenic mice in which lymphatic endothelial cells express GFP (Prox1-GFP) with mice in which vascular endothelial cells express DsRed (Flt1-DsRed) to generate Prox1-GFP/Flt1-DsRed (PGFD) mice. The inherent fluorescence of blood and lymphatic vessels allows for direct visualization of blood and lymphatic vessels in various organs via confocal and two-photon microscopy and the formation, branching, and regression of both vessel types in the same live mouse cornea throughout an experimental time course. PGFD mice were bred with CDh5CreERT2 and VEGFR2lox knockout mice to examine specific knockouts. These studies showed a novel role for vascular endothelial cell VEGFR2 in regulating VEGFC-induced corneal lymphangiogenesis. Conditional deletion of vascular endothelial VEGFR2 abolished VEGFA- and VEGFC-induced corneal lymphangiogenesis. These results demonstrate the potential use of the PGFD mouse as a powerful animal model for studying angiogenesis and lymphangiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Potente M, Makinen T (2017) Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol. doi:10.1038/nrm.2017.36

    PubMed  Google Scholar 

  2. Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K (2002) Metastasis: lymphangiogenesis and cancer metastasis. Nat Rev Cancer 2(8):573–583

    Article  CAS  PubMed  Google Scholar 

  3. Ohk J, Jung H (2017) Visualization and quantitative analysis of embryonic angiogenesis in Xenopus tropicalis. JoVE. doi:10.3791/55652

    PubMed  Google Scholar 

  4. Simons M, Alitalo K, Annex BH, Augustin HG, Beam C, Berk BC, Byzova T, Carmeliet P, Chilian W, Cooke JP, Davis GE, Eichmann A, Iruela-Arispe ML, Keshet E, Sinusas AJ, Ruhrberg C, Woo YJ, Dimmeler S (2015) State-of-the-art methods for evaluation of angiogenesis and tissue vascularization: a scientific statement from the American Heart Association. Circ Res 116(11):e99–e132. doi:10.1161/RES.0000000000000054

    Article  CAS  PubMed  Google Scholar 

  5. Matsumoto K, Azami T, Otsu A, Takase H, Ishitobi H, Tanaka J, Miwa Y, Takahashi S, Ema M (2012) Study of normal and pathological blood vessel morphogenesis in Flt1-tdsRed BAC Tg mice. Genesis 50(7):561–571. doi:10.1002/dvg.22031

    Article  CAS  PubMed  Google Scholar 

  6. Kang GJ, Ecoiffier T, Truong T, Yuen D, Li G, Lee N, Zhang L, Chen L (2016) Intravital imaging reveals dynamics of lymphangiogenesis and valvulogenesis. Sci Rep 6:19459. doi:10.1038/srep19459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Calvo CF, Fontaine RH, Soueid J, Tammela T, Makinen T, Alfaro-Cervello C, Bonnaud F, Miguez A, Benhaim L, Xu Y, Barallobre MJ, Moutkine I, Lyytikka J, Tatlisumak T, Pytowski B, Zalc B, Richardson W, Kessaris N, Garcia-Verdugo JM, Alitalo K, Eichmann A, Thomas JL (2011) Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis. Genes Dev 25(8):831–844. doi:10.1101/gad.615311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu J, Dugas-Ford J, Chang M, Purta P, Han KY, Hong YK, Dickinson ME, Rosenblatt MI, Chang JH, Azar DT (2015) Simultaneous in vivo imaging of blood and lymphatic vessel growth in Prox1-GFP/Flk1:myr-mCherry mice. FEBS J 282(8):1458–1467. doi:10.1111/febs.13234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang JF, Walia A, Huang YH, Han KY, Rosenblatt MI, Azar DT, Chang JH (2016) Understanding lymphangiogenesis in knockout models, the cornea, and ocular diseases for the development of therapeutic interventions. Surv Ophthalmol 61(3):272–296. doi:10.1016/j.survophthal.2015.12.004

    Article  PubMed  Google Scholar 

  10. Matsushita J, Inagaki S, Nishie T, Sakasai T, Tanaka J, Watanabe C, Mizutani KI, Miwa Y, Matsumoto K, Takara K, Naito H, Kidoya H, Takakura N, Nagai T, Takahashi S, Ema M (2017) Fluorescence and bioluminescence imaging of angiogenesis in Flk1-nano-lantern transgenic mice. Sci Rep 7:46597. doi:10.1038/srep46597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341. doi:10.1038/nature14432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang Z, Zhang F, Li Y, Arjunan P, Kumar A, Lee C, Li X (2011) A mouse model of the cornea pocket assay for angiogenesis study. JoVE. doi:10.3791/3077

    Google Scholar 

  13. Chen L, Hann B, Wu L (2011) Experimental models to study lymphatic and blood vascular metastasis. J Surg Oncol 103(6):475–483. doi:10.1002/jso.21794

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cao R, Lim S, Ji H, Zhang Y, Yang Y, Honek J, Hedlund EM, Cao Y (2011) Mouse corneal lymphangiogenesis model. Nat Protoc 6(6):817–826. doi:10.1038/nprot.2011.359

    Article  CAS  PubMed  Google Scholar 

  15. Yuen D, Wu X, Kwan AC, Ledue J, Zhang H, Ecoiffier T, Pytowski B, Chen L (2011) Live imaging of newly formed lymphatic vessels in the cornea. Cell Res 21(12):1745–1749. doi:10.1038/cr.2011.178

    Article  PubMed  PubMed Central  Google Scholar 

  16. Paduch R (2016) The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol (Dordr) 39(5):397–410. doi:10.1007/s13402-016-0281-9

    Article  CAS  Google Scholar 

  17. Chang JH, Garg NK, Lunde E, Han KY, Jain S, Azar DT (2012) Corneal neovascularization: an anti-VEGF therapy review. Surv Ophthalmol 57(5):415–429. doi:10.1016/j.survophthal.2012.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chang JH, Gabison EE, Kato T, Azar DT (2001) Corneal neovascularization. Curr Opin Ophthalmol 12(4):242–249

    Article  CAS  PubMed  Google Scholar 

  19. Walia A, Yang JF, Huang YH, Rosenblatt MI, Chang JH (1850) Azar DT (2015) Endostatin’s emerging roles in angiogenesis, lymphangiogenesis, disease, and clinical applications. Biochem Biophys Acta 12:2422–2438. doi:10.1016/j.bbagen.2015.09.007

    Google Scholar 

  20. Qazi Y, Hamrah P (2013) Corneal allograft rejection: immunopathogenesis to therapeutics. J Clin Cell Immunol. doi:10.4172/2155-9899.S9-006

    PubMed  PubMed Central  Google Scholar 

  21. Abud TB, Di Zazzo A, Kheirkhah A, Dana R (2017) Systemic immunomodulatory strategies in high-risk corneal transplantation. J Ophthalmic Vis Res 12(1):81–92. doi:10.4103/2008-322X.200156

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stevenson W, Cheng SF, Dastjerdi MH, Ferrari G, Dana R (2012) Corneal neovascularization and the utility of topical VEGF inhibition: ranibizumab (Lucentis) vs bevacizumab (Avastin). Ocul Surf 10(2):67–83. doi:10.1016/j.jtos.2012.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cao R, Ji H, Feng N, Zhang Y, Yang X, Andersson P, Sun Y, Tritsaris K, Hansen AJ, Dissing S, Cao Y (2012) Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc Natl Acad Sci 109(39):15894–15899. doi:10.1073/pnas.1208324109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478

    Article  CAS  PubMed  Google Scholar 

  25. Albuquerque RJC, Hayashi T, Cho WG, Kleinman ME, Dridi S, Takeda A, Baffi JZ, Yamada K, Kaneko H, Green MG, Chappell J, Wilting J, Weich HA, Yamagami S, Amano S, Mizuki N, Alexander JS, Peterson ML, Brekken RA, Hirashima M, Capoor S, Usui T, Ambati BK, Ambati J (2009) Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med 15(9):1023–1030. http://www.nature.com/nm/journal/v15/n9/suppinfo/nm.2018_S1.html

  26. Shibuya M (2006) Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis 9(4):225–230. doi:10.1007/s10456-006-9055-8

    Article  CAS  PubMed  Google Scholar 

  27. Chang LK, Garcia-Cardeña G, Farnebo F, Fannon M, Chen EJ, Butterfield C, Moses MA, Mulligan RC, Folkman J, Kaipainen A (2004) Dose-dependent response of FGF-2 for lymphangiogenesis. Proc Natl Acad Sci USA 101(32):11658–11663. doi:10.1073/pnas.0404272101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Simons M, Gordon E, Claesson-Welsh L (2016) Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 17(10):611–625. doi:10.1038/nrm.2016.87

    Article  CAS  PubMed  Google Scholar 

  29. Rahimi N, Dayanir V, Lashkari K (2000) Receptor chimeras indicate that the vascular endothelial growth factor receptor-1 (VEGFR-1) modulates mitogenic activity of VEGFR-2 in endothelial cells. J Biol Chem 275(22):16986–16992. doi:10.1074/jbc.M000528200

    Article  CAS  PubMed  Google Scholar 

  30. Choi I, Chung HK, Ramu S, Lee HN, Kim KE, Lee S, Yoo J, Choi D, Lee YS, Aguilar B, Hong YK (2011) Visualization of lymphatic vessels by Prox1-promoter directed GFP reporter in a bacterial artificial chromosome-based transgenic mouse. Blood 117(1):362–365. doi:10.1182/blood-2010-07-298562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health [EY10101 (D.T.A.), EY021886, I01 BX002386 (J.H.C), and EY01792 and EY027912 (MIR)], Eversight Midwest Eye Bank Fund (J.H.C) and an unrestricted grant from Research to Prevent Blindness, New York, NY. This work made use of instruments in the Core Imaging Facility (Research Resources Center, UIC).

Author information

Authors and Affiliations

Authors

Contributions

WZ, XG, and SW performed experiments and data analyses. SA and RHA provide CDh5CreERT2 mice and technical support. ME provided the Flt1-DsRed mice. KH, MIR, J-HC, and DTA planned the research, discussed the data analysis, and wrote the manuscript.

Corresponding authors

Correspondence to Jin-Hong Chang or Dimitri T. Azar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, W., Gao, X., Wang, S. et al. Prox1-GFP/Flt1-DsRed transgenic mice: an animal model for simultaneous live imaging of angiogenesis and lymphangiogenesis. Angiogenesis 20, 581–598 (2017). https://doi.org/10.1007/s10456-017-9572-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-017-9572-7

Keywords

Navigation