Skip to main content
Log in

Enhanced peripheral dopamine impairs post-ischemic healing by suppressing angiotensin receptor type 1 expression in endothelial cells and inhibiting angiogenesis

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Increased circulating catecholamines have been linked with cardiovascular anomalies as well as with peripheral vascular diseases. Although the roles of epinephrine and norepinephrine have received considerable attention, the role of the other catecholamine, dopamine, has been less studied. Since dopamine is a potent endogenous inhibitor of angiogenesis and as angiogenesis is essential for ischemic healing, we therefore studied the role played by dopamine during ischemic healing using dopamine D2 receptor knockout (KOD2) mice. Although concentration of dopamine and its rate-limiting enzyme, tyrosine hydroxylase, was considerably high in the muscle tissues of wild-type and KOD2 mice with unilateral hind limb ischemia (HLI), recovery was significantly faster in the KOD2 mice compared to the wild-type controls, thereby indicating that peripheral dopamine might have a role in this healing process. In addition, we observed significant differences in post-ischemic angiogenesis between these two groups. Our study further revealed that elevated dopamine independently suppressed activation of local tissue-based renin-angiotensin system (RAS), a critical growth factor system stimulating angiogenesis in ischemia. Angiotensin II (ATII) and its receptor, angiotensin receptor type 1 (AT1R), are the key players in RAS-mediated angiogenesis. Dopamine acting through its D2 receptors in endothelial cells inhibited ATII-mediated angiogenesis by suppressing the expression of AT1R in these cells. This study thus for the first time demonstrates the role played by dopamine in prolonging post-ischemic recovery. Therefore, pharmacological intervention inhibiting the action of dopamine holds promise as future therapeutic strategy for the treatment of HLI and other peripheral arterial diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hirsch AT, Duval S (2013) The global pandemic of peripheral artery disease. Lancet 9901:1312–1314

    Article  Google Scholar 

  2. Baumgartner I (2015) Peripheral artery occlusive disease a major contributor to cardiovascular public health burden. Eur Heart J 15:894–896

    Article  Google Scholar 

  3. Freedman SB, Isner JM (2002) Therapeutic angiogenesis for coronary artery disease. Ann Intern Med 136:54–71

    Article  PubMed  Google Scholar 

  4. Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H, Udelson JE, Gervino EV, Pike M, Whitehouse MJ, Moon T, Chronos NA (2002) Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation 105:788–793

    Article  CAS  PubMed  Google Scholar 

  5. Lekas M, Lekas P, Latter DA, Kutryk MB, Stewart DJ (2006) Growth factor-induced therapeutic neovascularization for ischaemic vascular disease: Time for a re-evaluation? Curr Opin Cardiol 21:376–384

    Article  PubMed  Google Scholar 

  6. Tongers J, Roncalli JG, Losordo DW (2008) Therapeutic angiogenesis for critical limb ischemia: microvascular therapies coming of age. Circulation 118:9–16

    Article  PubMed  Google Scholar 

  7. Chung AS, Ferrara N (2011) Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol 27:563–584

    Article  CAS  PubMed  Google Scholar 

  8. Collinson DJ, Donnelly R (2004) Therapeutic angiogenesis in peripheral arterial disease: Can biotechnology produce an effective collateral circulation? Eur J Vasc Endovasc Surg 1:9–23

    Article  Google Scholar 

  9. Uchida C, Haas TL (2009) Evolving strategies in manipulating VEGF/VEGFR signaling for the promotion of angiogenesis in ischemic muscle. Curr Pharm Des 15:411–421

    Article  CAS  PubMed  Google Scholar 

  10. Hazarika S, Dokun AO, Li Y, Popel AS, Kontos CD, Annex BH (2007) Impaired angiogenesis after hindlimb ischemia in type 2 diabetes mellitus: differential regulation of vascular endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Circ Res 101:948–956

    Article  CAS  PubMed  Google Scholar 

  11. Basu S, Nagy JA, Pal S, Vasile E, Eckelhoefer IA, Bliss VS, Manseau EJ, Dasgupta PS, Dvorak HF, Mukhopadhyay D (2001) The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat Med 7:569–574

    Article  CAS  PubMed  Google Scholar 

  12. Chakroborty D, Sarkar C, Mitra RB, Banerjee S, Dasgupta PS, Basu S (2004) Depleted dopamine in gastric cancer tissues: dopamine treatment retards growth of gastric cancer by inhibiting angiogenesis. Clin Cancer Res 10:4349–4356

    Article  CAS  PubMed  Google Scholar 

  13. Sarkar C, Chakroborty D, Mitra RB, Banerjee S, Dasgupta PS, Basu S (2004) Dopamine in vivo inhibits VEGF-induced phosphorylation of VEGFR-2, MAPK, and focal adhesion kinase in endothelial cells. Am J Physiol Heart Circ Physiol 287:H1554–H1560

    Article  CAS  PubMed  Google Scholar 

  14. Chakroborty D, Chowdhury UR, Sarkar C, Baral R, Dasgupta PS, Basu S (2008) Dopamine regulates endothelial progenitor cell mobilization from mouse bone marrow in tumor vascularization. J Clin Invest 118:1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shome S, Rana T, Ganguly S, Basu B, Chaki Choudhury S, Sarkar C, Chakroborty D, Dasgupta PS, Basu S (2011) Dopamine regulates angiogenesis in normal dermal wound tissues. PLoS ONE 6:e25215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chalothorn D, Zhang H, Clayton JA, Thomas SA, Faber JE (2005) Catecholamines augment collateral vessel growth and angiogenesis in hindlimb ischemia. Am J Physiol Heart Circ Physiol 289:H947–H959

    Article  CAS  PubMed  Google Scholar 

  17. Bruno RM, Ghiadoni L, Seravalle G, Dell’oro R, Taddei S, Grassi G (2012) Sympathetic regulation of vascular function in health and disease. Front Physiol 3:284

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chakroborty D, Sarkar C, Basu B, Dasgupta PS, Basu S (2009) Catecholamines regulate tumor angiogenesis. Cancer Res 69:3727–3730

    Article  CAS  PubMed  Google Scholar 

  19. Tilan J, Kitlinska J (2010) Sympathetic neurotransmitters and tumor angiogenesis—link between stress and cancer progression. J Oncol 2010:539706

    Article  PubMed  PubMed Central  Google Scholar 

  20. Barton DA, Dawood T, Lambert EA, Esler MD, Haikerwal D, Brenchley C, Socratous F, Kaye DM, Schlaich MP, Hickie I, Lambert GW (2007) Sympathetic activity in major depressive disorder: Identifying those at increased cardiac risk? J Hypertens 25:2117–2124

    Article  CAS  PubMed  Google Scholar 

  21. Kaye DM, Lambert GW, Lefkovits J, Morris M, Jennings G, Esler MD (1994) Neurochemical evidence of cardiac sympathetic activation and increased central nervous system norepinephrine turnover in severe congestive heart failure. J Am Coll Cardiol 23:570–578

    Article  CAS  PubMed  Google Scholar 

  22. Kaye DM, Lefkovits J, Jennings GL, Bergin P, Broughton A, Esler MD (1995) Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol 26:1257–1263

    Article  CAS  PubMed  Google Scholar 

  23. Barretto AC, Santos AC, Munhoz R, Rondon MU, Franco FG, Trombetta IC, Roveda F, de Matos LN, Braga AM, Middlekauff HR, Negrão CE (2009) Increased muscle sympathetic nerve activity predicts mortality in heart failure patients. Int J Cardiol 135:302–307

    Article  PubMed  Google Scholar 

  24. Basu S, Sarkar C, Chakroborty D, Nagy J, Mitra RB, Dasgupta PS, Mukhopadhyay D (2004) Ablation of peripheral dopaminergic nerves stimulates malignant tumor growth by inducing vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis. Cancer Res 64:5551–5555

    Article  CAS  PubMed  Google Scholar 

  25. Sasaki K, Murohara T, Ikeda H, Sugaya T, Shimada T, Shintani S, Imaizumi T (2002) Evidence for the importance of angiotensin II type 1 receptor in ischemia-induced angiogenesis. J Clin Invest 109:603–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gul R, Ramdas M, Mandavia CH, Sowers JR, Pulakat L (2012) RAS-mediated adaptive mechanisms in cardiovascular tissues: confounding factors of RAS blockade therapy and alternative approaches. Cardiorenal Med 2:268–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tufan H, Zaki BM, Tecder-Unal M, Erdem SR, Take G (2007) Angiotensin II captopril cotreatment augments angiogenesis in abdominal skin flap in rats. Ann Plast Surg 58:441–448

    Article  CAS  PubMed  Google Scholar 

  28. Everson-Rose SA, Roetker NS, Lutsey PL, Kershaw KN, Longstreth WT, Sacco RL, Diez Roux AV, Alonso A (2014) Chronic stress, depressive symptoms, anger, hostility, and risk of stroke and transient ischemic attack in the multi-ethnic study of atherosclerosis. Stroke 45:2318–2323

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pieterse C, Schutte R, Schutte AE (2016) Leptin relates to prolonged cardiovascular recovery after acute stress in Africans: the SABPA study. Nutr Metab Cardiovasc Dis 26:45–52

    Article  CAS  PubMed  Google Scholar 

  30. Wittstein IS, Thiemann DR, Lima JA, Baughman KL, Schulman SP, Gerstenblith G, Wu KC, Rade JJ, Bivalacqua TJ, Champion HC (2005) Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352:539–548

    Article  CAS  PubMed  Google Scholar 

  31. Cas LD, Metra M, Nodari S, Nardi M, Giubbini R, Visioli O (1993) Stress and ischemic heart disease. Cardiologia 38:415–425

    CAS  PubMed  Google Scholar 

  32. Stone PH, Krantz DS, McMahon RP, Goldberg AD, Becker LC, Chaitman BR, Taylor HA, Cohen JD, Freedland KE, Bertolet BD, Coughlan C, Pepine CJ, Kaufmann PG, Sheps DS (1999) Relationship among mental stress-induced ischemia and ischemia during daily life and during exercise: the psychophysiologic investigations of myocardial ischemia (PIMI) study. J Am Coll Cardiol 33:1476–1484

    Article  CAS  PubMed  Google Scholar 

  33. Adler CM, Elman I, Weisenfeld N, Kestler L, Pickar D, Breier A (2000) Effects of acute metabolic stress on striatal dopamine release in healthy volunteers. Neuropsychopharmacology 22:545–550

    Article  CAS  PubMed  Google Scholar 

  34. Abercrombie ED, Keefe KA, DiFrischia DS, Zigmond MJ (1989) Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J Neurochem 52:1655–1658

    Article  CAS  PubMed  Google Scholar 

  35. Puglisi-Allegra S, Imperato A, Angelucci L, Cabib S (1991) Acute stress induces time-dependent responses in dopamine mesolimbic system. Brain Res 554:217–222

    Article  CAS  PubMed  Google Scholar 

  36. Tamarat R, Silvestre JS, Huijberts M, Benessiano J, Ebrahimian TG, Duriez M, Wautier MP, Wautier JL, Lévy BI (2003) Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice. Proc Natl Acad Sci USA 100:8555–8560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hendgen-Cotta UB, Luedike P, Totzeck M, Kropp M, Schicho A, Stock P, Rammos C, Niessen M, Heiss C, Lundberg JO, Weitzberg E, Kelm M, Rassaf T (2012) Dietary nitrate supplementation improves revascularization in chronic ischemia. Circulation 126:1983–1992

    Article  CAS  PubMed  Google Scholar 

  38. Ferrara N (2001) Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol 280:1358–1366

    Google Scholar 

  39. Toko H, Zou Y, Minamino T, Masaya M, Harada M, Nagai T, Sugaya T, Terasaki F, Kitaura Y, Komuro I (2004) Angiotensin II type 1a receptor is involved in cell infiltration, cytokine production, and neovascularization in infarcted myocardium. Arterioscler Thromb Vasc Biol 24:664–670

    Article  CAS  PubMed  Google Scholar 

  40. Sheikh-Hamad D, Wang YP, Jo OD, Yanagawa N (1993) Dopamine antagonizes the actions of angiotensin II in renal brush-border membrane. Am J Physiol 264:F737–F743

    CAS  PubMed  Google Scholar 

  41. Bek MJ, Wang X, Asico LD, Jones JE, Zheng S, Li X, Eisner GM, Grandy DK, Carey RM, Soares-da-Silva P, Jose PA (2006) Angiotensin-II type 1 receptor-mediated hypertension in D4 dopamine receptor–deficient mice. Hypertension 47:288–295

    Article  CAS  PubMed  Google Scholar 

  42. Joglar B, Rodriguez-Pallares J, Rodriguez-Perez AI, Rey P, Guerra MJ, Labandeira-Garcia JL (2009) The inflammatory response in the MPTP model of Parkinson’s disease is mediated by brain angiotensin: relevance to progression of the disease. J Neurochem 109:656–669

    Article  CAS  PubMed  Google Scholar 

  43. Chakroborty D, Sarkar C, Yu H, Wang J, Liu Z, Dasgupta PS, Basu S (2011) Dopamine stabilizes tumor blood vessels by up-regulating angiopoietin 1 expression in pericytes and Kruppel-like factor-2 expression in tumor endothelial cells. Proc Natl Acad Sci USA 108:20730–20735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rossi NF (1998) Dopaminergic control of angiotensin II-induced vasopressin secretion in vitro. Am J Physiol 275:E687–E693

    CAS  PubMed  Google Scholar 

  45. Hu C, Dandapat A, Mehta JL (2007) Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway. Hypertension 50:952–957

    Article  CAS  PubMed  Google Scholar 

  46. Ma J, Liu W, Yan X, Wang Q, Zhao Q, Xue Y, Ren H, Wu L, Cheng Y, Li S, Miao L, Yao L, Zhang J (2012) Inhibition of endothelial cell proliferation and tumor angiogenesis by up-regulating NDRG2 expression in breast cancer cells. PLoS ONE 7:e32368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu K, Chakroborty D, Sarkar C, Lu T, Xie Z, Liu Z, Basu S (2012) Triphala and its active constituent chebulinic acid are natural inhibitors of vascular endothelial growth factor-a mediated angiogenesis. PLoS ONE 7:e43934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Arnold SA, Rivera LB, Carbon JG, Toombs JE, Chang CL, Bradshaw AD, Brekken RA (2012) Losartan slows pancreatic tumor progression and extends survival of SPARC-null mice by abrogating aberrant TGFβ activation. PLoS ONE 7:e31384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ramkhelawon B, Vilar J, Rivas D, Mees B, de Crom R, Tedgui A, Lehoux S (2009) Shear stress regulates angiotensin type 1 receptor expression in endothelial cells. Circ Res 105:869–875

    Article  CAS  PubMed  Google Scholar 

  50. Ichiki T, Usui M, Kato M, Funakoshi Y, Ito K, Egashira K, Takeshita A (1998) Downregulation of angiotensin II type 1 receptor gene transcription by nitric oxide. Hypertension 31:342–348

    Article  CAS  PubMed  Google Scholar 

  51. Tousoulis D, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanadis C (2012) The role of nitric oxide on endothelial function. Curr Vasc Pharmacol 10:4–18

    Article  CAS  PubMed  Google Scholar 

  52. Sakkoula E, Pipili-Synetos E, Maragoudakis ME (1997) Involvement of nitric oxide in the inhibition of angiogenesis by interleukin-2. Br J Pharmacol 122:793–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sarkar R, Webb RC, Stanley JC (1995) Nitric oxide inhibition of endothelial cell mitogenesis and proliferation. Surgery 118:274–279

    Article  CAS  PubMed  Google Scholar 

  54. Cartwright JE, Johnstone AP, Whitley GS (2000) Endogenously produced nitric oxide inhibits endothelial cell growth as demonstrated using novel antisense cell lines. Br J Pharmacol 131:131–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pyne-Geithman GJ, Caudell DN, Cooper M, Clark JF, Shutter LA (2009) Dopamine D2-receptor-mediated increase in vascular and endothelial NOS activity ameliorates cerebral vasospasm after subarachnoid hemorrhage in vitro. Neurocrit Care 10:225–231

    Article  CAS  PubMed  Google Scholar 

  56. Granado N, Ares-Santos S, Oliva I, O’Shea E, Martin ED, Colado MI, Moratalla R (2011) Dopamine D2-receptor knockout mice are protected against dopaminergic neurotoxicity induced by methamphetamine or MDMA. Neurobiol Dis 42:391–403

    Article  CAS  PubMed  Google Scholar 

  57. Nouet S, Nahmias C (2000) Signal transduction from the angiotensin II AT2 receptor. Trends Endocrinol Metab 11:1–6

    Article  CAS  PubMed  Google Scholar 

  58. Ager EI, Neo J, Christophi C (2008) The renin-angiotensin system and malignancy. Carcinogenesis 29:1675–1684

    Article  CAS  PubMed  Google Scholar 

  59. Cooke JP, Losordo DW (2002) Nitric oxide and angiogenesis. Circulation 105:2133–2135

    Article  PubMed  Google Scholar 

  60. Babaei S, Stewart DJ (2002) Overexpression of endothelial NO synthase induces angiogenesis in a co-culture model. Cardiovasc Res 55:190–200

    Article  CAS  PubMed  Google Scholar 

  61. Kon K, Fujii S, Kosaka H, Fujiwara T (2003) Nitric oxide synthase inhibition by N(G)-nitro-l-arginine methyl ester retards vascular sprouting in angiogenesis. Microvasc Res 65:2–8

    Article  CAS  PubMed  Google Scholar 

  62. Silvestre JS, Mallat Z, Tedgui A, Lévy BI (2008) Post-ischaemic neovascularization and inflammation. Cardiovasc Res 78:242–249

    Article  CAS  PubMed  Google Scholar 

  63. Jaipersad AS, Lip GY, Silverman S, Shantsila E (2014) The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol 63:1–11

    Article  CAS  PubMed  Google Scholar 

  64. Pardanaud L, Pibouin-Fragner L, Dubrac A, Mathivet T, English I, Brunet I, Simons M, Eichmann A (2016) Sympathetic innervation promotes arterial fate by enhancing endothelial ERK activity. Circ Res 119(5):607–620

    Article  CAS  PubMed  Google Scholar 

  65. Erami C, Zhang H, Tanoue A, Tsujimoto G, Thomas SA, Faber JE (2005) Adrenergic catecholamine trophic activity contributes to flow-mediated arterial remodeling. Am J Physiol Heart Circ Physiol 289(2):H744–H753

    Article  CAS  PubMed  Google Scholar 

  66. Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Sujit Basu, Department of Pathology and Division of Medical Oncology, Department of Internal Medicine, Ohio State University, for careful reading, insightful comments and suggestions.

Funding

This work is supported by AHA Grant No. 10BGIA4230012 to DC. CS is partly supported by NIH R01 DK098045 and RKG is partly supported by NIH R01 Grants CA109527 and CA153490.

Author contributions

D. C. and C. S. designed research; D. C. and C. S., performed experiments; D. C., C. S., R. K. G. and V. J. P. analyzed data; D. C. and C. S. wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debanjan Chakroborty.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 427 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, C., Ganju, R.K., Pompili, V.J. et al. Enhanced peripheral dopamine impairs post-ischemic healing by suppressing angiotensin receptor type 1 expression in endothelial cells and inhibiting angiogenesis. Angiogenesis 20, 97–107 (2017). https://doi.org/10.1007/s10456-016-9531-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-016-9531-8

Keywords

Navigation