Skip to main content
Log in

Androgens modulate male-derived endothelial cell homeostasis using androgen receptor-dependent and receptor-independent mechanisms

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Background

Sex-related differences in the role of androgen have been reported in cardiovascular diseases and angiogenesis. Moreover, androgen receptor (AR) has been causally involved in the homeostasis of human prostate endothelial cells. However, levels of expression, functionality and biological role of AR in male- and female-derived human endothelial cells (ECs) remain poorly characterized. The objectives of this work were (1) to characterize the functional expression of AR in male- and female-derived human umbilical vein endothelial cell (HUVEC), and (2) to specifically analyze the biological effects of DHT, and the role of AR on these effects, in male-derived HUVECs (mHUVECs).

Results

Immunohistochemical analyses of tissue microarrays from benign human tissues confirmed expression of AR in ECs from several androgen-regulated and non-androgen-regulated human organs. Functional expression of AR was validated in vitro in male- and female-derived HUVECs using quantitative RT-PCR, immunoblotting and AR-mediated transcriptional activity assays. Our results indicated that functional expression of AR in male- and female-derived HUVECs was heterogeneous, but not sex dependent. In parallel, we analyzed in depth the biological effects of DHT, and the role of AR on these effects, on proliferation, survival and tube formation capacity in mHUVECs. Our results indicated that DHT did not affect mHUVEC survival; however, DHT stimulated mHUVEC proliferation and suppressed mHUVEC tube formation capacity. While the effect of DHT on proliferation was mediated through AR, the effect of DHT on tube formation did not depend on the presence of a functional AR, but rather depended on the ability of mHUVECs to further metabolize DHT.

Conclusions

(1) Heterogeneous expression of AR in male- and female-derived HUVEC could define the presence of functionally different subpopulations of ECs that may be affected differentially by androgens, which could explain, at least in part, the pleiotropic effects of androgen on vascular biology, and (2) DHT, and metabolites of DHT, generally thought to represent progressively more hydrophilic products along the path to elimination, may have differential roles in modulating the biology of human ECs through AR-dependent and AR-independent mechanisms, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Laudet V, Hanni C, Coll J, Catzeflis F, Stehelin D (1992) Evolution of the nuclear receptor gene superfamily. EMBO J 11(3):1003–1013

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Blauer M, Vaalasti A, Pauli SL, Ylikomi T, Joensuu T, Tuohimaa P (1991) Location of androgen receptor in human skin. J Invest Dermatol 97(2):264–268

    Article  CAS  PubMed  Google Scholar 

  3. Laine M, Blauer M, Ylikomi T, Tuohimaa P, Aitasalo K, Happonen RP, Tenovuo J (1993) Immunohistochemical demonstration of androgen receptors in human salivary glands. Arch Oral Biol 38(4):299–302

    Article  CAS  PubMed  Google Scholar 

  4. Abu EO, Horner A, Kusec V, Triffitt JT, Compston JE (1997) The localization of androgen receptors in human bone. J Clin Endocrinol Metab 82(10):3493–3497

    Article  CAS  PubMed  Google Scholar 

  5. Mantalaris A, Panoskaltsis N, Sakai Y, Bourne P, Chang C, Messing EM, Wu JH (2001) Localization of androgen receptor expression in human bone marrow. J Pathol 193(3):361–366

    Article  CAS  PubMed  Google Scholar 

  6. Schultheiss D, Badalyan R, Pilatz A, Gabouev AI, Schlote N, Wefer J, von Wasielewski R, Mertsching H, Sohn M, Stief CG, Jonas U (2003) Androgen and estrogen receptors in the human corpus cavernosum penis: immunohistochemical and cell culture results. World J Urol 21(5):320–324

    Article  CAS  PubMed  Google Scholar 

  7. Sinha-Hikim I, Taylor WE, Gonzalez-Cadavid NF, Zheng W, Bhasin S (2004) Androgen receptor in human skeletal muscle and cultured muscle satellite cells: up-regulation by androgen treatment. J Clin Endocrinol Metab 89(10):5245–5255

    Article  CAS  PubMed  Google Scholar 

  8. Godoy A, Watts A, Sotomayor P, Montecinos VP, Huss WJ, Onate SA, Smith GJ (2008) Androgen receptor is causally involved in the homeostasis of the human prostate endothelial cell. Endocrinology 149(6):2959–2969. doi:10.1210/en.2007-1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Godoy AS, Chung I, Montecinos VP, Buttyan R, Johnson CS, Smith GJ (2013) Role of androgen and vitamin D receptors in endothelial cells from benign and malignant human prostate. Am J Physiol Endocrinol Metab 304(11):E1131–E1139. doi:10.1152/ajpendo.00602.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Torres-Estay V, Carreno DV, San Francisco IF, Sotomayor P, Godoy AS, Smith GJ (2015) Androgen receptor in human endothelial cells. J Endocrinol 224(3):R131–R137. doi:10.1530/JOE-14-0611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yoshida S, Ikeda Y, Aihara K (2016) Roles of the androgen–androgen receptor system in vascular angiogenesis. J Atheroscler Thromb 23(3):257–265. doi:10.5551/jat.31047

    Article  CAS  PubMed  Google Scholar 

  12. Buttyan R, Shabsigh A, Perlman H, Colombel M (1999) Regulation of apoptosis in the prostate gland by androgenic steroids. Trends Endocrinol Metab 10(2):47–54

    Article  CAS  PubMed  Google Scholar 

  13. Cheng L, Zhang S, Sweeney CJ, Kao C, Gardner TA, Eble JN (2004) Androgen withdrawal inhibits tumor growth and is associated with decrease in angiogenesis and VEGF expression in androgen-independent CWR22Rv1 human prostate cancer model. Anticancer Res 24(4):2135–2140

    CAS  PubMed  Google Scholar 

  14. Godoy A, Montecinos VP, Gray DR, Sotomayor P, Yau JM, Vethanayagam RR, Singh S, Mohler JL, Smith GJ (2011) Androgen deprivation induces rapid involution and recovery of human prostate vasculature. Am J Physiol Endocrinol Metab 300(2):E263–E275. doi:10.1152/ajpendo.00210.2010

    Article  CAS  PubMed  Google Scholar 

  15. Hougaku H, Fleg JL, Najjar SS, Lakatta EG, Harman SM, Blackman MR, Metter EJ (2006) Relationship between androgenic hormones and arterial stiffness, based on longitudinal hormone measurements. Am J Physiol Endocrinol Metab 290(2):E234–E242

    Article  CAS  PubMed  Google Scholar 

  16. Alexandersen P, Haarbo J, Byrjalsen I, Lawaetz H, Christiansen C (1999) Natural androgens inhibit male atherosclerosis: a study in castrated, cholesterol-fed rabbits. Circ Res 84(7):813–819

    Article  CAS  PubMed  Google Scholar 

  17. Dockery F, Bulpitt CJ, Donaldson M, Fernandez S, Rajkumar C (2003) The relationship between androgens and arterial stiffness in older men. J Am Geriatr Soc 51(11):1627–1632

    Article  PubMed  Google Scholar 

  18. Malkin CJ, Pugh PJ, Jones RD, Jones TH, Channer KS (2003) Testosterone as a protective factor against atherosclerosis–immunomodulation and influence upon plaque development and stability. J Endocrinol 178(3):373–380

    Article  CAS  PubMed  Google Scholar 

  19. Kang SM, Jang Y, Kim JY, Chung N, Cho SY, Chae JS, Lee JH (2002) Effect of oral administration of testosterone on brachial arterial vasoreactivity in men with coronary artery disease. Am J Cardiol 89(7):862–864

    Article  CAS  PubMed  Google Scholar 

  20. Kalin MF, Zumoff B (1990) Sex hormones and coronary disease: a review of the clinical studies. Steroids 55(8):330–352

    Article  CAS  PubMed  Google Scholar 

  21. Montalcini T, Gorgone G, Gazzaruso C, Sesti G, Perticone F, Pujia A (2007) Endogenous testosterone and endothelial function in postmenopausal women. Coron Artery Dis 18(1):9–13

    Article  PubMed  Google Scholar 

  22. Oesterling JE (1994) Endocrine therapies for symptomatic benign prostatic hyperplasia. Urology 43(2 Suppl):7–16

    Article  CAS  PubMed  Google Scholar 

  23. Alonzi R, Padhani AR, Taylor NJ, Collins DJ, D’Arcy JA, Stirling JJ, Saunders MI, Hoskin PJ (2011) Antivascular effects of neoadjuvant androgen deprivation for prostate cancer: an in vivo human study using susceptibility and relaxivity dynamic MRI. Int J Radiat Oncol Biol Phys 80(3):721–727

    Article  CAS  PubMed  Google Scholar 

  24. Kravchick S, Cytron S, Mamonov A, Peled R, Linov L (2009) Effect of short-term dutasteride therapy on prostate vascularity in patients with benign prostatic hyperplasia: a pilot study. Urology 73(6):1274–1278

    Article  PubMed  Google Scholar 

  25. Godoy A, Montecinos VP, Gray DR, Sotomayor P, Yau JM, Vethanayagam RR, Singh S, Mohler JL, Smith GJ (2011) Androgen deprivation induces rapid involution and recovery of human prostate vasculature. Am J Physiol Endocrinol Metab 300(2):E263–E275

    Article  CAS  PubMed  Google Scholar 

  26. Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52(11):2745–2756. doi:10.1172/JCI107470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nachman RL, Jaffe EA (2004) Endothelial cell culture: beginnings of modern vascular biology. J Clin Invest 114(8):1037–1040. doi:10.1172/JCI23284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sotomayor P, Godoy A, Smith GJ, Huss WJ (2009) Oct4A is expressed by a subpopulation of prostate neuroendocrine cells. Prostate 69(4):401–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cano P, Godoy A, Escamilla R, Dhir R, Onate SA (2007) Stromal–epithelial cell interactions and androgen receptor-coregulator recruitment is altered in the tissue microenvironment of prostate cancer. Cancer Res 67(2):511–519

    Article  CAS  PubMed  Google Scholar 

  30. Shafi AA, Putluri V, Arnold JM, Tsouko E, Maity S, Roberts JM, Coarfa C, Frigo DE, Putluri N, Sreekumar A, Weigel NL (2015) Differential regulation of metabolic pathways by androgen receptor (AR) and its constitutively active splice variant, AR-V7, in prostate cancer cells. Oncotarget 6(31):31997–32012. doi:10.18632/oncotarget.5585

    PubMed  PubMed Central  Google Scholar 

  31. von der Ahe D, Janich S, Scheidereit C, Renkawitz R, Schutz G, Beato M (1985) Glucocorticoid and progesterone receptors bind to the same sites in two hormonally regulated promoters. Nature 313(6004):706–709

    Article  PubMed  Google Scholar 

  32. Hsing AW, Reichardt JK, Stanczyk FZ (2002) Hormones and prostate cancer: current perspectives and future directions. Prostate 52(3):213–235

    Article  CAS  PubMed  Google Scholar 

  33. Bishop-Bailey D, Walsh DT, Warner TD (2004) Expression and activation of the farnesoid X receptor in the vasculature. Proc Natl Acad Sci USA 101(10):3668–3673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. He F, Li J, Mu Y, Kuruba R, Ma Z, Wilson A, Alber S, Jiang Y, Stevens T, Watkins S, Pitt B, Xie W, Li S (2006) Downregulation of endothelin-1 by farnesoid X receptor in vascular endothelial cells. Circ Res 98(2):192–199

    Article  CAS  PubMed  Google Scholar 

  35. Wang S, Lai K, Moy FJ, Bhat A, Hartman HB, Evans MJ (2006) The nuclear hormone receptor farnesoid X receptor (FXR) is activated by androsterone. Endocrinology 147(9):4025–4033. doi:10.1210/en.2005-1485

    Article  CAS  PubMed  Google Scholar 

  36. Huber RM, Murphy K, Miao B, Link JR, Cunningham MR, Rupar MJ, Gunyuzlu PL, Haws TF, Kassam A, Powell F, Hollis GF, Young PR, Mukherjee R, Burn TC (2002) Generation of multiple farnesoid-X-receptor isoforms through the use of alternative promoters. Gene 290(1–2):35–43

    Article  CAS  PubMed  Google Scholar 

  37. Lobo RA, Speroff L (1994) International consensus conference on postmenopausal hormone therapy and the cardiovascular system. Fertil Steril 61(4):592–595

    Article  CAS  PubMed  Google Scholar 

  38. Milewich L, Kaimal V, Johnson AR (1987) Steroid 5 alpha-reductase activity in endothelial cells from human umbilical cord vessels. J Steroid Biochem 26(5):561–567

    Article  CAS  PubMed  Google Scholar 

  39. Mukherjee TK, Dinh H, Chaudhuri G, Nathan L (2002) Testosterone attenuates expression of vascular cell adhesion molecule-1 by conversion to estradiol by aromatase in endothelial cells: implications in atherosclerosis. Proc Natl Acad Sci USA 99(6):4055–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Feldman BJ, Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1(1):34–45

    Article  CAS  PubMed  Google Scholar 

  41. Tan J, Sharief Y, Hamil KG, Gregory CW, Zang DY, Sar M, Gumerlock PH, deVere White RW, Pretlow TG, Harris SE, Wilson EM, Mohler JL, French FS (1997) Dehydroepiandrosterone activates mutant androgen receptors expressed in the androgen-dependent human prostate cancer xenograft CWR22 and LNCaP cells. Mol Endocrinol 11(4):450–459

    Article  CAS  PubMed  Google Scholar 

  42. Sieveking DP, Lim P, Chow RW, Dunn LL, Bao S, McGrath KC, Heather AK, Handelsman DJ, Celermajer DS, Ng MK (2010) A sex-specific role for androgens in angiogenesis. J Exp Med 207(2):345–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Antonarakis ES, Luo J (2015) Prostate cancer: AR splice variant dimerization—clinical implications. Nat Rev Urol 12(8):431–433. doi:10.1038/nrurol.2015.184

    Article  CAS  PubMed  Google Scholar 

  44. Leibrand CR, Price DK, Figg WD (2016) Androgen receptor splice variant 7 (AR-V7) and drug efficacy in castration-resistant prostate cancer: biomarker for treatment selection exclusion or inclusion? Cancer Biol Ther. doi:10.1080/15384047.2016.1156274

    PubMed  Google Scholar 

  45. Yoshida S, Aihara K, Ikeda Y, Sumitomo-Ueda Y, Uemoto R, Ishikawa K, Ise T, Yagi S, Iwase T, Mouri Y, Sakari M, Matsumoto T, Takeyama K, Akaike M, Matsumoto M, Sata M, Walsh K, Kato S (2013) Androgen receptor promotes sex-independent angiogenesis in response to ischemia and is required for activation of vascular endothelial growth factor receptor signaling. Circulation 128(1):60–71. doi:10.1161/CIRCULATIONAHA.113.001533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Montecinos VP, Godoy A, Hinklin J, Vethanayagam RR, Smith GJ (2012) Primary xenografts of human prostate tissue as a model to study angiogenesis induced by reactive stroma. PLoS One 7(1):e29623. doi:10.1371/journal.pone.0029623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Montecinos VP, Morales CH, Fischer TH, Burns S, San Francisco IF, Godoy AS, Smith GJ (2015) Selective targeting of bioengineered platelets to prostate cancer vasculature: new paradigm for therapeutic modalities. J Cell Mol Med 19(7):1530–1537. doi:10.1111/jcmm.12515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tanner MJ, Welliver RC Jr, Chen M, Shtutman M, Godoy A, Smith G, Mian BM, Buttyan R (2011) Effects of androgen receptor and androgen on gene expression in prostate stromal fibroblasts and paracrine signaling to prostate cancer cells. PLoS One 6(1):e16027. doi:10.1371/journal.pone.0016027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Balk SP, Knudsen KE (2008) AR, the cell cycle, and prostate cancer. Nucl Recept Signal 6:e001

    PubMed  PubMed Central  Google Scholar 

  50. Cai J, Hong Y, Weng C, Tan C, Imperato-McGinley J, Zhu YS (2011) Androgen stimulates endothelial cell proliferation via an androgen receptor/VEGF/cyclin A-mediated mechanism. Am J Physiol Heart Circ Physiol 300(4):H1210–H1221. doi:10.1152/ajpheart.01210.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Das A, Yaqoob U, Mehta D, Shah VH (2009) FXR promotes endothelial cell motility through coordinated regulation of FAK and MMP-9. Arterioscler Thromb Vasc Biol 29(4):562–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Department of Defense W81XWH-12-1-0341 and FONDECYT Regular (1130051 and 1161115) Grants to A. Godoy and FONDECYT Iniciación (11140255) to P. Sotomayor. V. Torres-Estay was supported by a Ph.D. fellowship from CONICYT. The authors thank Dr. Yusser Olguín from Universidad Andres Bello for the graphic design support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro S. Godoy.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Gary J. Smith and Alejandro S. Godoy have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10456_2016_9525_MOESM1_ESM.tif

Supplementary Figure 1. Cellular distribution of AR in mHUVECs. mHUVECs were stimulated for 24 h to vehicle (ethanol) or 1 nM dihydrotestosterone (DHT). Nuclear (N) and cytoplasmic (C) cellular extracts were prepared using the NE-PER kit (ThermoFisher Scientific). Membranes and nuclei were probed using antibodies against AR. Histone H3 (nuclear) and β-tubulin (cytoplasmic) were used as loading controls (TIFF 5416 kb)

10456_2016_9525_MOESM2_ESM.tif

Supplementary Fig. 2. FXR expression in mHUVECs. (A) RT-PCR analysis of expression of FXR in HUVECs obtained from 4 different donors and derived from female (lanes 1 and 2) and male (lanes 3 and 4) fetuses. HepG2 cells were used as positive control (lane 5). GAPDH was used as loading control. (B) RT-PCR analysis of expression of FXR directed against four different regions of the FXR gene in HUVECs exposed to vehicle (lanes 1) or 1 nM DHT (lanes 2). HepG2 cells were used as positive control (lanes 3). GAPDH was used as loading control (TIFF 6509 kb)

Supplementary material 3 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres-Estay, V., Carreño, D.V., Fuenzalida, P. et al. Androgens modulate male-derived endothelial cell homeostasis using androgen receptor-dependent and receptor-independent mechanisms. Angiogenesis 20, 25–38 (2017). https://doi.org/10.1007/s10456-016-9525-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-016-9525-6

Keywords

Navigation