Skip to main content
Log in

Control of dendritic cell trafficking in lymphatics by chemokines

  • Review Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Dendritic cells (DCs) are crucial participants in maintaining immune surveillance of the periphery and initiating primary immune responses within the draining lymph nodes. The afferent lymphatic vessels provide a conduit for this essential trafficking and, as this review will describe, play an active role in regulating DC migration. Afferent lymphatic capillaries support constitutive trafficking of DCs from resting, non-inflamed tissue, to maintain tolerance against self-antigen and to provide immune surveillance. Following exposure to pathogens or pro-inflammatory cytokines, DCs mature from phagocytes to professional antigen-presenting cells, whilst the lymphatic endothelium adopts an activated phenotype to support the ensuing increase in leukocyte trafficking. The lymphatic endothelial-derived chemokine CCL21 plays a well-characterized role in directing migration of CCR7+ DC in both resting and acute inflammatory conditions. However, efficient trafficking of DCs from inflamed tissue also demands additional chemokine-receptor pairs. Thus, entry of DCs to activated lymphatic vessels is an intricately regulated multi-step process involving numerous chemokines and adhesion molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Steinman RM, Cohn ZA (1974) Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. J Exp Med 139(2):380–397

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Steinman RM, Cohn ZA (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137(5):1142–1162

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Steinman RM (2012) Decisions about dendritic cells: past, present, and future. Ann Rev Immunol 30:1–22. doi:10.1146/annurev-immunol-100311-102839

    Article  CAS  Google Scholar 

  4. Randolph GJ, Ochando J, Partida-Sanchez S (2008) Migration of dendritic cell subsets and their precursors. Ann Rev Immunol 26:293–316. doi:10.1146/annurev.immunol.26.021607.090254

    Article  CAS  Google Scholar 

  5. Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V (2011) Plasmacytoid dendritic cells: recent progress and open questions. Ann Rev Immunol 29:163–183. doi:10.1146/annurev-immunol-031210-101345

    Article  CAS  Google Scholar 

  6. Merad M, Sathe P, Helft J, Miller J, Mortha A (2013) The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Ann Rev Immunol 31:563–604. doi:10.1146/annurev-immunol-020711-074950

    Article  CAS  Google Scholar 

  7. Huang F-P, Platt N, Wykes M, Major JR, Powell TJ, Jenkins CD, MacPherson GG (2000) A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J Exp Med 191(3):435–443

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Scheinecker C, McHugh R, Shevach EM, Germain RN (2002) Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J Exp Med 196(8):1079–1090

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Jakubzick C, Bogunovic M, Bonito AJ, Kuan EL, Merad M, Randolph GJ (2008) Lymph-migrating, tissue-derived dendritic cells are minor constituents within steady-state lymph nodes. J Exp Med 205(12):2839–2850. doi:10.1084/jem.20081430

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S, Lanzavecchia A (1998) Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28(9):2760–2769

    Article  PubMed  CAS  Google Scholar 

  11. Enk AH, Katz SI (1992) Early molecular events in the induction phase of contact sensitivity. Proc Nat Acad Sci USA 89:1398–1402

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Enk AH, Angeloni VL, Udey MC, Katz SI (1993) An essential role for Langerhans cell-derived IL-1 beta in the initiation of primary immune responses in skin. J Immunol 150(9):3698–3704

    PubMed  CAS  Google Scholar 

  13. Cumberbatch M, Kimber I (1995) Tumour necrosis factor-alpha is required for accumulation of dendritic cells in draining lymph nodes and for optimal contact sensitization. Immunology 84(1):31–35

    PubMed Central  PubMed  CAS  Google Scholar 

  14. Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D, Corada M, Molendini C, Dejana E, McDonald DM (2007) Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 204(10):2349–2362

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Yao LC, Baluk P, Srinivasan RS, Oliver G, McDonald DM (2012) Plasticity of button-like junctions in the endothelium of airway lymphatics in development and inflammation. Am J Pathol 180(6):2561–2575. doi:10.1016/j.ajpath.2012.02.019

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Pflicke H, Sixt M (2009) Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J Exp Med 206(13):2925–2935

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Lammermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R, Hirsch K, Keller M, Forster R, Critchley DR, Fassler R, Sixt M (2008) Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453(7191):51–55

    Article  PubMed  CAS  Google Scholar 

  18. Johnson LA, Clasper S, Holt AP, Lalor PF, Baban D, Jackson DG (2006) An inflammation-induced mechanism for leukocyte transmigration across lymphatic vessel endothelium. J Exp Med 203:2763–2777

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Teoh D, Johnson LA, Hanke T, McMichael AJ, Jackson DG (2009) Blocking development of a CD8+ T cell response by targeting lymphatic recruitment of antigen presenting cells. J Immunol 182(4):2425–2431

    Article  PubMed  CAS  Google Scholar 

  20. Maddaluno L, Verbrugge SE, Martinoli C, Matteoli G, Chiavelli A, Zeng Y, Williams ED, Rescigno M, Cavallaro U (2009) The adhesion molecule L1 regulates transendothelial migration and trafficking of dendritic cells. J Exp Med 206(3):623–635. doi:10.1084/jem.20081211

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Wethmar K, Helmus Y, Luhn K, Jones C, Laskowska A, Varga G, Grabbe S, Lyck R, Engelhardt B, Bixel MG, Butz S, Loser K, Beissert S, Ipe U, Vestweber D, Wild MK (2006) Migration of immature mouse DC across resting endothelium is mediated by ICAM-2 but independent of beta2-integrins and murine DC-SIGN homologues. Eur J Immunol 36(10):2781–2794

    Article  PubMed  CAS  Google Scholar 

  22. Cera MR, Del Prete A, Vecchi A, Corada M, Martin-Padura I, Motoike T, Tonetti P, Bazzoni G, Vermi W, Gentili F, Bernasconi S, Sato T, Mantovani A, Dejana E (2004) Increased DC trafficking to lymph nodes and contact hypersensitivity in junctional adhesion molecule-A-deficient mice. J Clin Investig 114(5):729–738

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Iolyeva M, Karaman S, Willrodt AH, Weingartner S, Vigl B, Halin C (2013) Novel role for ALCAM in lymphatic network formation and function. FASEB J 27(3):978–990. doi:10.1096/fj.12-217844

    Article  PubMed  CAS  Google Scholar 

  24. Torzicky M, Viznerova P, Richter S, Strobl H, Scheinecker C, Foedinger D, Riedl E (2012) Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) and CD99 are critical in lymphatic transmigration of human dendritic cells. J Invest Dermatol 132(4):1149–1157. doi:10.1038/jid.2011.420

    Article  PubMed  CAS  Google Scholar 

  25. Teijeira A, Palazon A, Garasa S, Marre D, Auba C, Rogel A, Murillo O, Martinez-Forero I, Lang F, Melero I, Rouzaut A (2012) CD137 on inflamed lymphatic endothelial cells enhances CCL21-guided migration of dendritic cells. FASEB J 26(8):3380–3392. doi:10.1096/fj.11-201061

    Article  PubMed  CAS  Google Scholar 

  26. Czeloth N, Bernhardt G, Hofmann F, Genth H, Forster R (2005) Sphingosine-1-phosphate mediates migration of mature dendritic cells. J Immunol 175(5):2960–2967

    Article  PubMed  CAS  Google Scholar 

  27. Pham TH, Baluk P, Xu Y, Grigorova I, Bankovich AJ, Pappu R, Coughlin SR, McDonald DM, Schwab SR, Cyster JG (2010) Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J Exp Med 207(1):17–27. doi:10.1084/jem.20091619

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Acton SE, Astarita JL, Malhotra D, Lukacs-Kornek V, Franz B, Hess PR, Jakus Z, Kuligowski M, Fletcher AL, Elpek KG, Bellemare-Pelletier A, Sceats L, Reynoso ED, Gonzalez SF, Graham DB, Chang J, Peters A, Woodruff M, Kim YA, Swat W, Morita T, Kuchroo V, Carroll MC, Kahn ML, Wucherpfennig KW, Turley SJ (2012) Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2. Immunity 37(2):276–289. doi:10.1016/j.immuni.2012.05.022

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Takamatsu H, Takegahara N, Nakagawa Y, Tomura M, Taniguchi M, Friedel RH, Rayburn H, Tessier-Lavigne M, Yoshida Y, Okuno T, Mizui M, Kang S, Nojima S, Tsujimura T, Nakatsuji Y, Katayama I, Toyofuku T, Kikutani H, Kumanogoh A (2010) Semaphorins guide the entry of dendritic cells into the lymphatics by activating myosin II. Nat Immunol 11(7):594–600. doi:10.1038/ni.1885

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Rot A, von Andrian UH (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Ann Rev Immunol 22:891–928. doi:10.1146/annurev.immunol.22.012703.104543

    Article  CAS  Google Scholar 

  31. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12(2):121–127

    Article  PubMed  CAS  Google Scholar 

  32. Murphy PM, Baggiolini M, Charo IF, Hebert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, Power CA (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52(1):145–176

    PubMed  CAS  Google Scholar 

  33. Merad M, Manz MG, Karsunky H, Wagers A, Peters W, Charo I, Weissman IL, Cyster JG, Engleman EG (2002) Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol 3(12):1135–1141. doi:10.1038/ni852

    Article  PubMed  CAS  Google Scholar 

  34. Stumbles PA, Strickland DH, Pimm CL, Proksch SF, Marsh AM, McWilliam AS, Bosco A, Tobagus I, Thomas JA, Napoli S, Proudfoot AE, Wells TN, Holt PG (2001) Regulation of dendritic cell recruitment into resting and inflamed airway epithelium: use of alternative chemokine receptors as a function of inducing stimulus. J Immunol 167(1):228–234

    Article  PubMed  CAS  Google Scholar 

  35. Yamagami S, Hamrah P, Miyamoto K, Miyazaki D, Dekaris I, Dawson T, Lu B, Gerard C, Dana MR (2005) CCR5 chemokine receptor mediates recruitment of MHC class II-positive Langerhans cells in the mouse corneal epithelium. Invest Ophthalmol Vis Sci 46(4):1201–1207. doi:10.1167/iovs.04-0658

    Article  PubMed  Google Scholar 

  36. Merad M, Hoffmann P, Ranheim E, Slaymaker S, Manz MG, Lira SA, Charo I, Cook DN, Weissman IL, Strober S, Engleman EG (2004) Depletion of host Langerhans cells before transplantation of donor alloreactive T cells prevents skin graft-versus-host disease. Nat Med 10(5):510–517. doi:10.1038/nm1038

    Article  PubMed  CAS  Google Scholar 

  37. Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, Kakizaki M, Takagi S, Nomiyama H, Schall TJ, Yoshie O (1997) Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91(4):521–530

    Article  PubMed  CAS  Google Scholar 

  38. Johnson LA, Jackson DG (2013) The chemokine CX3CL1 promotes trafficking of dendritic cells through inflamed lymphatics. J Cell Sci. doi:10.1242/jcs.135343

    PubMed Central  Google Scholar 

  39. Förster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I, Wolf E, Lipp M (1999) CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99:23–33

    Article  PubMed  Google Scholar 

  40. Ohl L, Mohaupt M, Czeloth N, Hintzen G, Kiafard Z, Zwirner J, Blankenstein T, Henning G, Forster R (2004) CCR7 govern skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21:279–288

    Article  PubMed  CAS  Google Scholar 

  41. Saeki H, Moore AM, Brown MJ, Hwang ST (1999) Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J Immunol 162(5):2472–2475

    PubMed  CAS  Google Scholar 

  42. Martín-Fontecha A, Sebastiani S, Hopken UE, Uguccinoni M, Lipp M, Lanzavecchia A, Sallusto F (2003) Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 198(4):615–621

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Miteva DO, Rutkowski JM, Dixon JB, Kilarski W, Shields JD, Swartz MA (2010) Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ Res 106(5):920–931. doi:10.1161/CIRCRESAHA.109.207274

    Article  PubMed  CAS  Google Scholar 

  44. Johnson LA, Jackson DG (2010) Inflammation-induced secretion of CCL21 in lymphatic endothelium is a key regulator of integrin-mediated dendritic cell transmigration. Int Immunol 22(10):839–849

    Article  PubMed  CAS  Google Scholar 

  45. Eich C, de Vries IJ, Linssen PC, de Boer A, Boezeman JB, Figdor CG, Cambi A (2011) The lymphoid chemokine CCL21 triggers LFA-1 adhesive properties on human dendritic cells. Immunol Cell Biol 89(3):458–465. doi:10.1038/icb.2010.103

    Article  PubMed  CAS  Google Scholar 

  46. Teijeira A, Garasa S, Pelaez R, Azpilikueta A, Ochoa C, Marre D, Rodrigues M, Alfaro C, Auba C, Valitutti S, Melero I, Rouzaut A (2013) Lymphatic endothelium forms integrin-engaging 3D structures during DC transit across inflamed lymphatic vessels. J Invest Dermatol 133(9):2276–2285. doi:10.1038/jid.2013.152

    Article  PubMed  CAS  Google Scholar 

  47. Barreiro O, Yanez-Mo M, Serrador JM, Montoya MC, Vincente-Manzanares M, Teyedor R, Furthmayr H, Sanchez-Madrid F (2002) Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 157(7):1233–1245

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Carman CV, Jun C-D, Salas A, Springer TA (2003) Endothelial cells proactively form microvilli-like membrane projections upon intercellular adhesion molecule 1 engagement of leukocyte LFA-1. J Immunol 171:6135–6144

    Article  PubMed  CAS  Google Scholar 

  49. Hirose J, Kawashima H, Swope Willis M, Springer TA, Hasegawa H, Yoshie O, Miyasaka M (2002) Chondroitin sulfate B exerts its inhibitory effect on secondary lymphoid tissue chemokine (SLC) by binding to the C-terminus of SLC. Biochim Biophys Acta 1571(3):219–224

    Article  PubMed  CAS  Google Scholar 

  50. Patel DD, Koopmann W, Imai T, Whichard LP, Yoshie O, Krangel MS (2001) Chemokines have diverse abilities to form solid phase gradients. Clin Immunol 99(1):43–52. doi:10.1006/clim 2000.4997

    Article  PubMed  CAS  Google Scholar 

  51. Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I, Legler DF, Luther SA, Bollenbach T, Sixt M (2013) Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 339(6117):328–332. doi:10.1126/science.1228456

    Article  PubMed  CAS  Google Scholar 

  52. Tal O, Lim HY, Gurevich I, Milo I, Shipony Z, Ng LG, Angeli V, Shakhar G (2011) DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. J Exp Med 208(10):2141–2153

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Yang BG, Tanaka T, Jang MH, Bai Z, Hayasaka H, Miyasaka M (2007) Binding of lymphoid chemokines to collagen IV that accumulates in the basal lamina of high endothelial venules: its implications in lymphocyte trafficking. J Immunol 179(7):4376–4382

    Article  PubMed  CAS  Google Scholar 

  54. Kilarski WW, Guc E, Teo JC, Oliver SR, Lund AW, Swartz MA (2013) Intravital immunofluorescence for visualizing the microcirculatory and immune microenvironments in the mouse ear dermis. PLoS ONE 8(2):e57135. doi:10.1371/journal.pone.0057135

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Nitschke M, Aebischer D, Abadier M, Haener S, Lucic M, Vigl B, Luche H, Fehling HJ, Biehlmaier O, Lyck R, Halin C (2012) Differential requirement for ROCK in dendritic cell migration within lymphatic capillaries in steady-state and inflammation. Blood 120(11):2249–2258. doi:10.1182/blood-2012-03-417923

    Article  PubMed  CAS  Google Scholar 

  56. Sen D, Forrest L, Kepler TB, Parker I, Cahalan MD (2010) Selective and site-specific mobilization of dermal dendritic cells and Langerhans cells by Th1- and Th2-polarizing adjuvants. Proc Natl Acad Sci USA 107(18):8334–8339. doi:10.1073/pnas.0912817107

    Article  PubMed Central  PubMed  Google Scholar 

  57. Kriehuber E, Breiteneder-Geleff S, Groeger M, Soleiman A, Schoppmann SF, Stingl G, Kerjaschki D, Maurer D (2001) Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med 194(6):797–808

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, Littman DR, Rollins BJ, Zweerink H, Rot A, von Andrian UH (2001) Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissue. J Exp Med 194(9):1361–1373

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A, Schall TJ (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385(6617):640–644

    Article  PubMed  CAS  Google Scholar 

  60. Pan Y, Lloyd C, Zhou H, Dolich S, Deeds J, Gonzalo JA, Vath J, Gosselin M, Ma J, Dussault B, Woolf E, Alperin G, Culpepper J, Gutierrez-Ramos JC, Gearing D (1997) Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature 387(6633):611–617

    Article  PubMed  CAS  Google Scholar 

  61. Fong AM, Robinson LA, Steeber DA, Tedder TF, Yoshie O, Imai T, Patel DD (1998) Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. J Exp Med 188(8):1413–1419

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Haskell CA, Cleary MD, Charo IF (1999) Molecular uncoupling of fractalkine-mediated cell adhesion and signal transduction. Rapid flow arrest of CX3CR1-expressing cells is independent of G-protein activation. J Biol Chem 274(15):10053–10058

    Article  PubMed  CAS  Google Scholar 

  63. Viemann D, Goebeler M, Schmid S, Klimmek K, Sorg C, Ludwig S, Roth J (2004) Transcriptional profiling of IKK2/NF-kappa B- and p38 MAP kinase-dependent gene expression in TNF-alpha-stimulated primary human endothelial cells. Blood 103(9):3365–3373

    Article  PubMed  CAS  Google Scholar 

  64. Garton KJ, Gough PJ, Blobel CP, Murphy G, Greaves DR, Dempsey PJ, Raines EW (2001) Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem 276(41):37993–38001

    PubMed  CAS  Google Scholar 

  65. Hundhausen C, Misztela D, Berkhout TA, Broadway N, Saftig P, Reiss K, Hartmann D, Fahrenholz F, Postina R, Matthews V, Kallen KJ, Rose-John S, Ludwig A (2003) The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell–cell adhesion. Blood 102(4):1186–1195

    Article  PubMed  CAS  Google Scholar 

  66. Goda S, Imai T, Yoshie O, Yoneda O, Inoue H, Nagano Y, Okazaki T, Imai H, Bloom ET, Domae N, Umehara H (2000) CX3C-chemokine, fractalkine-enhanced adhesion of THP-1 cells to endothelial cells through integrin-dependent and -independent mechanisms. J Immunol 164(8):4313–4320

    Article  PubMed  CAS  Google Scholar 

  67. Umehara H, Goda S, Imai T, Nagano Y, Minami Y, Tanaka Y, Okazaki T, Bloom ET, Domae N (2001) Fractalkine, a CX3C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1. Immunol Cell Biol 79(3):298–302

    Article  PubMed  CAS  Google Scholar 

  68. Garton KJ, Gough PJ, Raines EW (2006) Emerging roles for ectodomain shedding in the regulation of inflammatory responses. J Leukoc Biol 79(6):1105–1116

    Article  PubMed  CAS  Google Scholar 

  69. Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20(11):4106–4114

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327 (5966):656–661

    Google Scholar 

  71. Rao RM, Yang L, Garcia-Cardena G, Luscinskas FW (2007) Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circ Res 101(3):234–247

    Article  PubMed  CAS  Google Scholar 

  72. Luster AD (1998) Chemokines–chemotactic cytokines that mediate inflammation. New Engl J Med 338(7):436–445. doi:10.1056/NEJM199802123380706

    Article  PubMed  CAS  Google Scholar 

  73. Kabashima K, Shiraishi N, Sugita K, Mori T, Onoue A, Kobayashi M, Sakabe J, Yoshiki R, Tamamura H, Fujii N, Inaba K, Tokura Y (2007) CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am J Pathol 171(4):1249–1257

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Kabashima K, Sugita K, Shiraishi N, Tamamura H, Fujii N, Tokura Y (2007) CXCR4 engagement promotes dendritic cell survival and maturation. Biochem Biophys Res Commun 361(4):1012–1016. doi:10.1016/j.bbrc.2007.07.128

    Article  PubMed  CAS  Google Scholar 

  75. Amara A, Lorthioir O, Valenzuela A, Magerus A, Thelen M, Montes M, Virelizier JL, Delepierre M, Baleux F, Lortat-Jacob H, Arenzana-Seisdedos F (1999) Stromal cell-derived factor-1 alpha associates with heparan sulfates through the first beta-strand of the chemokine. J Biol Chem 274(34):23916–23925

    Article  PubMed  CAS  Google Scholar 

  76. Sadir R, Baleux F, Grosdidier A, Imberty A, Lortat-Jacob H (2001) Characterization of the stromal cell-derived factor-1 alpha-heparin complex. J Biol Chem 276(11):8288–8296. doi:10.1074/jbc.M008110200

    Article  PubMed  CAS  Google Scholar 

  77. Vigl B, Aebischer D, Nitschke M, Iolyeva M, Rothlin T, Antsiferova O, Halin C (2011) Tissue inflammation modulates gene expression of lymphatic endothelial cells and dendritic cell migration in a stimulus-dependent manner. Blood 118(1):205–215. doi:10.1182/blood-2010-12-326447

    Article  PubMed  CAS  Google Scholar 

  78. Qu C, Edwards EW, Tacke F, Angeli V, Llodra J, Sanchez-Schmitz G, Garin A, Haque NS, Peters W, van Rooijen N, Sanchez-Torres C, Bromberg J, Charo IF, Jung S, Lira SA, Randolph GJ (2004) Role of CCR8 and other chemokine pathways in the migration of moncyte-derived dendritic cells to lymph nodes. J Exp Med 200(10):1231–1241

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Greaves DR, Wang W, Dairaghi DJ, Dieu MC, Saint-Vis B, Franz-Bacon K, Rossi D, Caux C, McClanahan T, Gordon S, Zlotnik A, Schall TJ (1997) CCR6, a CC chemokine receptor that interacts with macrophage inflammatory protein 3 alpha and is highly expressed in human dendritic cells. J Exp Med 186(6):837–844

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Nibbs RJ, Wylie SM, Pragnell IB, Graham GJ (1997) Cloning and characterization of a novel murine beta chemokine receptor, D6. Comparison to three other related macrophage inflammatory protein-1 alpha receptors, CCR-1, CCR-3 and CCR-5. J Biol Chem 272(19):12495–12504

    Article  PubMed  CAS  Google Scholar 

  81. Nibbs RJ, Wylie SM, Yang J, Landau NR, Graham GJ (1997) Cloning and characterization of a novel promiscuous human beta-chemokine receptor D6. J Biol Chem 272(51):32078–32083

    Article  PubMed  CAS  Google Scholar 

  82. Lee KM, Nibbs RJ, Graham GJ (2013) D6: the ‘crowd controller’ at the immune gateway. Trends Immunol 34(1):7–12. doi:10.1016/j.it.2012.08.001

    Article  PubMed  CAS  Google Scholar 

  83. Nibbs RJB, Kriehuber E, Ponath PD, Parent D, Qin S, Campbell JDM, Henderson A, Kerjaschki D, Maurer D, Graham GJ, Rot A (2001) The beta-chemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors. Am J Pathol 158(3):867–877

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Jamieson T, Cook DN, Nibbs RJ, Rot A, Nixon C, McLean P, Alcami A, Lira SA, Wiekowski M, Graham GJ (2005) The chemokine receptor D6 limits the inflammatory response in vivo. Nat Immunol 6(4):403–411. doi:10.1038/ni1182

    Article  PubMed  CAS  Google Scholar 

  85. Martinez de la Torre Y, Locati M, Buracchi C, Dupor J, Cook DN, Bonecchi R, Nebuloni M, Rukavina D, Vago L, Vecchi A, Lira SA, Mantovani A (2005) Increased inflammation in mice deficient for the chemokine decoy receptor D6. Eur J Immunol 35(5):1342–1346

    Article  PubMed  CAS  Google Scholar 

  86. Lee KM, McKimmie CS, Gilchrist DS, Pallas KJ, Nibbs RJ, Garside P, McDonald V, Jenkins C, Ransohoff R, Liu L, Milling S, Cerovic V, Graham GJ (2011) D6 facilitates cellular migration and fluid flow to lymph nodes by suppressing lymphatic congestion. Blood 118(23):6220–6229. doi:10.1182/blood-2011-03-344044

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. McKimmie CS, Singh MD, Hewit K, Lopez-Franco O, Le Brocq M, Rose-John S, Lee KM, Baker AH, Wheat R, Blackbourn DJ, Nibbs RJ, Graham GJ (2013) An analysis of the function and expression of D6 on lymphatic endothelial cells. Blood 121(18):3768–3777. doi:10.1182/blood-2012-04-425314

    Article  PubMed  CAS  Google Scholar 

  88. Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A, Williams LT, Nakano H (1999) Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 189:451–460

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. White GE, Greaves DR (2012) Fractalkine: a survivor’s guide: chemokines as antiapoptotic mediators. Arterioscler Thromb Vasc Biol 32(3):589–594. doi:10.1161/ATVBAHA.111.237412

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors were supported by the UK Medical Research Council, through a New Investigator Award to L.A.J. and Unit Funding to D.G.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise A. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, L.A., Jackson, D.G. Control of dendritic cell trafficking in lymphatics by chemokines. Angiogenesis 17, 335–345 (2014). https://doi.org/10.1007/s10456-013-9407-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9407-0

Keywords

Navigation