Skip to main content

Advertisement

Log in

Endoglin and activin receptor-like kinase 1 heterozygous mice have a distinct pulmonary and hepatic angiogenic profile and response to anti-VEGF treatment

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Hereditary hemorrhagic telangiectasia (HHT) is a vascular dysplasia associated with dysregulated angiogenesis and arteriovascular malformations. The disease is caused by mutations in endoglin (ENG; HHT1) or activin receptor-like kinase 1 (ALK1; HHT2) genes, coding for transforming growth factor β (TGF-β) superfamily receptors. Vascular endothelial growth factor (VEGF) has been implicated in HHT and beneficial effects of anti-VEGF treatment were recently reported in HHT patients. To investigate the systemic angiogenic phenotype of Endoglin and Alk1 mutant mice and their response to anti-VEGF therapy, we assessed microvessel density (MVD) in multiple organs after treatment with an antibody to mouse VEGF or vehicle. Lungs were the only organ showing an angiogenic defect, with reduced peripheral MVD and secondary right ventricular hypertrophy (RVH), yet distinctly associated with a fourfold increase in thrombospondin-1 (TSP-1) in Eng +/− versus a rise in angiopoietin-2 (Ang-2) in Alk1 +/ mice. Anti-VEGF treatment did reduce lung VEGF levels but interestingly, led to an increase in peripheral pulmonary MVD and attenuation of RVH; it also normalized TSP-1 and Ang-2 expression. Hepatic MVD, unaffected in mutant mice, was reduced by anti-VEGF therapy in heterozygous and wild type mice, indicating a liver-specific effect of treatment. Contrast-enhanced micro-ultrasound demonstrated a reduction in hepatic microvascular perfusion after anti-VEGF treatment only in Eng +/− mice. Our findings indicate that the mechanisms responsible for the angiogenic imbalance and the response to anti-VEGF therapy differ between Eng and Alk1 heterozygous mice and raise the need for systemic monitoring of anti-angiogenic therapy effects in HHT patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shovlin CL (2010) Hereditary haemorrhagic telangiectasia: pathophysiology, diagnosis and treatment. Blood Rev 24(6):203–219. doi:10.1016/j.blre.2010.07.001

    Article  CAS  PubMed  Google Scholar 

  2. Dupuis-Girod S, Bailly S, Plauchu H (2010) Hereditary hemorrhagic telangiectasia: from molecular biology to patient care. J Thromb Haemost 8(7):1447–1456. doi:10.1111/j.1538-7836.2010.03860.x

    Article  CAS  PubMed  Google Scholar 

  3. Abdalla SA, Letarte M (2006) Hereditary haemorrhagic telangiectasia: current views on genetics and mechanisms of disease. J Med Genet 43(2):97–110. doi:10.1136/jmg.2005.030833

    Article  CAS  PubMed  Google Scholar 

  4. Girerd B, Montani D, Coulet F, Sztrymf B, Yaici A, Jais X, Tregouet D, Reis A, Drouin-Garraud V, Fraisse A, Sitbon O, O’Callaghan DS, Simonneau G, Soubrier F, Humbert M (2010) Clinical outcomes of pulmonary arterial hypertension in patients carrying an ACVRL1 (ALK1) mutation. Am J Respir Crit Care Med 181(8):851–861. doi:10.1164/rccm.200908-1284OC

    Article  CAS  PubMed  Google Scholar 

  5. Mache CJ, Gamillscheg A, Popper HH, Haworth SG (2008) Early-life pulmonary arterial hypertension with subsequent development of diffuse pulmonary arteriovenous malformations in hereditary haemorrhagic telangiectasia type 1. Thorax 63(1):85–86. doi:10.1136/thx.2007.076109

    Article  CAS  PubMed  Google Scholar 

  6. Blanco FJ, Santibanez JF, Guerrero-Esteo M, Langa C, Vary CP, Bernabeu C (2005) Interaction and functional interplay between endoglin and ALK-1, two components of the endothelial transforming growth factor-beta receptor complex. J Cell Physiol 204(2):574–584. doi:10.1002/jcp.20311

    Article  CAS  PubMed  Google Scholar 

  7. David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S (2007) Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109(5):1953–1961. doi:10.1182/blood-2006-07-034124

    Article  CAS  PubMed  Google Scholar 

  8. Goumans MJ, Valdimarsdottir G, Itoh S, Lebrin F, Larsson J, Mummery C, Karlsson S, ten Dijke P (2003) Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Mol Cell 12(4):817–828

    Article  CAS  PubMed  Google Scholar 

  9. Lebrin F, Goumans MJ, Jonker L, Carvalho RL, Valdimarsdottir G, Thorikay M, Mummery C, Arthur HM, ten Dijke P (2004) Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J 23(20):4018–4028. doi:10.1038/sj.emboj.7600386

    Article  CAS  PubMed  Google Scholar 

  10. Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA 97(6):2626–2631. doi:10.1073/pnas.97.6.2626

    Google Scholar 

  11. Lamouille S, Mallet C, Feige JJ, Bailly S (2002) Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood 100(13):4495–4501. doi:10.1182/blood.V100.13.4495

    Article  CAS  PubMed  Google Scholar 

  12. Pardali E, Goumans MJ, ten Dijke P (2010) Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell Biol 20(9):556–567. doi:10.1016/j.tcb.2010.06.006

    Article  CAS  PubMed  Google Scholar 

  13. Bourdeau A, Dumont DJ, Letarte M (1999) A murine model of hereditary hemorrhagic telangiectasia. J Clin Invest 104(10):1343–1351. doi:10.1172/JCI8088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Urness LD, Sorensen LK, Li DY (2000) Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet 26(3):328–331. doi:10.1038/81634

    Article  CAS  PubMed  Google Scholar 

  15. Bourdeau A, Faughnan ME, Letarte M (2000) Endoglin-deficient mice, a unique model to study hereditary hemorrhagic telangiectasia. Trends Cardiovasc Med 10(7):279–285. doi:10.1016/S1050-1738(01)00062-7

    Google Scholar 

  16. Srinivasan S, Hanes MA, Dickens T, Porteous ME, Oh SP, Hale LP, Marchuk DA (2003) A mouse model for hereditary hemorrhagic telangiectasia (HHT) type 2. Hum Mol Genet 12(5):473–482

    Article  CAS  PubMed  Google Scholar 

  17. Bourdeau A, Faughnan ME, McDonald ML, Paterson AD, Wanless IR, Letarte M (2001) Potential role of modifier genes influencing transforming growth factor-beta1 levels in the development of vascular defects in endoglin heterozygous mice with hereditary hemorrhagic telangiectasia. Am J Pathol 158(6):2011–2020. doi:10.1016/S0002-9440(10)64673-1

    Google Scholar 

  18. Park SO, Wankhede M, Lee YJ, Choi EJ, Fliess N, Choe SW, Oh SH, Walter G, Raizada MK, Sorg BS, Oh SP (2009) Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J Clin Invest 119(11):3487–3496. doi:10.1172/JCI39482

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Mahmoud M, Allinson KR, Zhai Z, Oakenfull R, Ghandi P, Adams RH, Fruttiger M, Arthur HM (2010) Pathogenesis of arteriovenous malformations in the absence of endoglin. Circ Res 106(8):1425–1433. doi:10.1161/CIRCRESAHA.109.211037

    Article  CAS  PubMed  Google Scholar 

  20. Jerkic M, Sotov V, Letarte M (2012) Oxidative stress contributes to endothelial dysfunction in mouse models of hereditary hemorrhagic telangiectasia. Oxid Med Cell Longev 2012:686972. doi:10.1155/2012/686972

    Article  PubMed Central  PubMed  Google Scholar 

  21. Toporsian M, Jerkic M, Zhou YQ, Kabir MG, Yu LX, McIntyre BA, Davis A, Wang YJ, Stewart DJ, Belik J, Husain M, Henkelman M, Letarte M (2010) Spontaneous adult-onset pulmonary arterial hypertension attributable to increased endothelial oxidative stress in a murine model of hereditary hemorrhagic telangiectasia. Arterioscler Thromb Vasc Biol 30(3):509–517. doi:10.1161/ATVBAHA.109.200121

    Article  CAS  PubMed  Google Scholar 

  22. Jerkic M, Kabir MG, Davies A, Yu LX, McIntyre BA, Husain NW, Enomoto M, Sotov V, Husain M, Henkelman M, Belik J, Letarte M (2011) Pulmonary hypertension in adult Alk1 heterozygous mice due to oxidative stress. Cardiovasc Res 92(3):375–384. doi:10.1093/cvr/cvr232

    Article  CAS  PubMed  Google Scholar 

  23. Torsney E, Charlton R, Diamond AG, Burn J, Soames JV, Arthur HM (2003) Mouse model for hereditary hemorrhagic telangiectasia has a generalized vascular abnormality. Circulation 107(12):1653–1657. doi:10.1161/01.CIR.0000058170.92267.00

    Article  PubMed  Google Scholar 

  24. Hlatky L, Hahnfeldt P, Folkman J (2002) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 94(12):883–893

    Article  PubMed  Google Scholar 

  25. Bourdeau A, Cymerman U, Paquet ME, Meschino W, McKinnon WC, Guttmacher AE, Becker L, Letarte M (2000) Endoglin expression is reduced in normal vessels but still detectable in arteriovenous malformations of patients with hereditary hemorrhagic telangiectasia type 1. Am J Pathol 156(3):911–923. doi:10.1016/S0002-9440(10)64960-7

    Article  CAS  PubMed  Google Scholar 

  26. Rinaldi M, Buscarini E, Danesino C, Chiosi F, De Benedictis A, Porcellini A, Costagliola C (2011) Ocular manifestations in hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber disease): a case-series. Ophthalmic Genet 32(1):12–17. doi:10.3109/13816810.2010.535891

    Article  PubMed  Google Scholar 

  27. Sadick H, Riedel F, Naim R, Goessler U, Hormann K, Hafner M, Lux A (2005) Patients with hereditary hemorrhagic telangiectasia have increased plasma levels of vascular endothelial growth factor and transforming growth factor-beta1 as well as high ALK1 tissue expression. Haematologica 90(6):818–828

    CAS  PubMed  Google Scholar 

  28. Sadick H, Naim R, Gossler U, Hormann K, Riedel F (2005) Angiogenesis in hereditary hemorrhagic telangiectasia: VEGF165 plasma concentration in correlation to the VEGF expression and microvessel density. Int J Mol Med 15(1):15–19

    CAS  PubMed  Google Scholar 

  29. Hao Q, Zhu Y, Su H, Shen F, Yang GY, Kim H, Young WL (2010) VEGF induces more severe cerebrovascular dysplasia in endoglin than in Alk1 mice. Transl Stroke Res 1(3):197–201. doi:10.1007/s12975-010-0020-x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358(19):2039–2049. doi:10.1056/NEJMra0706596

    Article  CAS  PubMed  Google Scholar 

  31. Mitchell A, Adams LA, MacQuillan G, Tibballs J, van den Driesen R, Delriviere L (2008) Bevacizumab reverses need for liver transplantation in hereditary hemorrhagic telangiectasia. Liver Transpl 14(2):210–213. doi:10.1002/lt.21417

    Article  PubMed  Google Scholar 

  32. Bose P, Holter JL, Selby GB (2009) Bevacizumab in hereditary hemorrhagic telangiectasia. N Engl J Med 360(20):2143–2144. doi:10.1056/NEJMc0901421

    Article  CAS  PubMed  Google Scholar 

  33. Dupuis-Girod S, Ginon I, Saurin JC, Marion D, Guillot E, Decullier E, Roux A, Carette MF, Gilbert-Dussardier B, Hatron PY, Lacombe P, Lorcerie B, Riviere S, Corre R, Giraud S, Bailly S, Paintaud G, Ternant D, Valette PJ, Plauchu H, Faure F (2012) Bevacizumab in patients with hereditary hemorrhagic telangiectasia and severe hepatic vascular malformations and high cardiac output. JAMA 307(9):948–955. doi:10.1001/jama.2012.250

    Article  CAS  PubMed  Google Scholar 

  34. Pettersson A, Nagy JA, Brown LF, Sundberg C, Morgan E, Jungles S, Carter R, Krieger JE, Manseau EJ, Harvey VS, Eckelhoefer IA, Feng D, Dvorak AM, Mulligan RC, Dvorak HF (2000) Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab Invest 80(1):99–115

    Article  CAS  PubMed  Google Scholar 

  35. Seki T, Yun J, Oh SP (2003) Arterial endothelium-specific activin receptor-like kinase 1 expression suggests its role in arterialization and vascular remodeling. Circ Res 93(7):682–689. doi:10.1161/01.RES.0000095246.40391.3B

    Article  CAS  PubMed  Google Scholar 

  36. Liang WC, Wu X, Peale FV, Lee CV, Meng YG, Gutierrez J, Fu L, Malik AK, Gerber HP, Ferrara N, Fuh G (2006) Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF. J Biol Chem 281(2):951–961. doi:10.1074/jbc.M508199200

    Article  CAS  PubMed  Google Scholar 

  37. Foster FS, Hossack J, Adamson SL (2011) Micro-ultrasound for preclinical imaging. Interface Focus 1(4):576–601. doi:10.1098/rsfs.2011.0037

    Article  PubMed Central  PubMed  Google Scholar 

  38. Guignabert C, Alvira CM, Alastalo TP, Sawada H, Hansmann G, Zhao M, Wang L, El-Bizri N, Rabinovitch M (2009) Tie2-mediated loss of peroxisome proliferator-activated receptor-gamma in mice causes PDGF receptor-beta-dependent pulmonary arterial muscularization. Am J Physiol Lung Cell Mol Physiol 297(6):L1082–L1090. doi:10.1152/ajplung.00199.2009

    Article  CAS  PubMed  Google Scholar 

  39. Pece-Barbara N, Vera S, Kathirkamathamby K, Liebner S, Di Guglielmo GM, Dejana E, Wrana JL, Letarte M (2005) Endoglin null endothelial cells proliferate faster and are more responsive to transforming growth factor beta1 with higher affinity receptors and an activated Alk1 pathway. J Biol Chem 280(30):27800–27808. doi:10.1074/jbc.M503471200

    Article  CAS  PubMed  Google Scholar 

  40. Loupakis F, Falcone A, Masi G, Fioravanti A, Kerbel RS, Del Tacca M, Bocci G (2007) Vascular endothelial growth factor levels in immunodepleted plasma of cancer patients as a possible pharmacodynamic marker for bevacizumab activity. J Clin Oncol 25(13):1816–1818. doi:10.1200/JCO.2006.10.3051

    Article  PubMed  Google Scholar 

  41. Baffert F, Thurston G, Rochon-Duck M, Le T, Brekken R, McDonald DM (2004) Age-related changes in vascular endothelial growth factor dependency and angiopoietin-1-induced plasticity of adult blood vessels. Circ Res 94(7):984–992. doi:10.1161/01.RES.0000125295.43813.1F

    Article  CAS  PubMed  Google Scholar 

  42. Lawler PR, Lawler J (2012) Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb Perspect Med 2(5):a006627. doi:10.1101/cshperspect.a006627

    Article  PubMed  Google Scholar 

  43. Park S, Dimaio TA, Liu W, Wang S, Sorenson CM, Sheibani N (2013) Endoglin regulates the activation and quiescence of endothelium by participating in canonical and non-canonical TGF-beta signaling pathways. J Cell Sci. doi:10.1242/jcs.117275

    Google Scholar 

  44. Shao ES, Lin L, Yao Y, Bostrom KI (2009) Expression of vascular endothelial growth factor is coordinately regulated by the activin-like kinase receptors 1 and 5 in endothelial cells. Blood 114(10):2197–2206. doi:10.1182/blood-2009-01-199166

    Article  CAS  PubMed  Google Scholar 

  45. Choi EJ, Walker EJ, Shen F, Oh SP, Arthur HM, Young WL, Su H (2012) Minimal homozygous endothelial deletion of eng with VEGF stimulation is sufficient to cause cerebrovascular dysplasia in the adult mouse. Cerebrovasc Dis 33(6):540–547. doi:10.1159/000337762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Walker EJ, Su H, Shen F, Degos V, Jun K, Young WL (2012) Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain. Stroke 43(7):1925–1930. doi:10.1161/STROKEAHA.111.647982

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Taraseviciene-Stewart L, Kasahara Y, Alger L, Hirth P, Mc Mahon G, Waltenberger J, Voelkel NF, Tuder RM (2001) Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J 15(2):427–438. doi:10.1096/fj.00-0343com

    Article  CAS  PubMed  Google Scholar 

  48. Rose A, Grandoch M, vom Dorp F, Rubben H, Rosenkranz A, Fischer JW, Weber AA (2010) Stimulatory effects of the multi-kinase inhibitor sorafenib on human bladder cancer cells. Br J Pharmacol 160(7):1690–1698. doi:10.1111/j.1476-5381.2010.00838.x

    Article  CAS  PubMed  Google Scholar 

  49. Conery AR, Cao Y, Thompson EA, Townsend CM Jr, Ko TC, Luo K (2004) Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat Cell Biol 6(4):366–372

    Article  CAS  PubMed  Google Scholar 

  50. Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N (2000) Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6(1):41–48. doi:10.1038/71517

    Article  CAS  PubMed  Google Scholar 

  51. Ochoa CD, Yu L, Al-Ansari E, Hales CA, Quinn DA (2010) Thrombospondin-1 null mice are resistant to hypoxia-induced pulmonary hypertension. J Cardiothorac Surg 5:32. doi:10.1186/1749-8090-5-32

    Article  PubMed Central  PubMed  Google Scholar 

  52. Greenaway J, Lawler J, Moorehead R, Bornstein P, Lamarre J, Petrik J (2007) Thrombospondin-1 inhibits VEGF levels in the ovary directly by binding and internalization via the low density lipoprotein receptor-related protein-1 (LRP-1). J Cell Physiol 210(3):807–818. doi:10.1002/jcp.20904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Kaur S, Martin-Manso G, Pendrak ML, Garfield SH, Isenberg JS, Roberts DD (2010) Thrombospondin-1 inhibits VEGF receptor-2 signaling by disrupting its association with CD47. J Biol Chem 285(50):38923–38932. doi:10.1074/jbc.M110.172304

    Article  CAS  PubMed  Google Scholar 

  54. Guo N, Krutzsch HC, Inman JK, Roberts DD (1997) Thrombospondin 1 and type I repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells. Cancer Res 57(9):1735–1742

    CAS  PubMed  Google Scholar 

  55. Kumpers P, Nickel N, Lukasz A, Golpon H, Westerkamp V, Olsson KM, Jonigk D, Maegel L, Bockmeyer CL, David S, Hoeper MM (2010) Circulating angiopoietins in idiopathic pulmonary arterial hypertension. Eur Heart J 31(18):2291–2300. doi:10.1093/eurheartj/ehq226

    Article  PubMed  Google Scholar 

  56. Fiedler U, Augustin HG (2006) Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol 27(12):552–558. doi:10.1016/j.it.2006.10.004

    Article  CAS  PubMed  Google Scholar 

  57. Lobov IB, Brooks PC, Lang RA (2002) Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci USA 99(17):11205–11210. doi:10.1073/pnas.172161899

    Article  CAS  PubMed  Google Scholar 

  58. Cao Y, Sonveaux P, Liu S, Zhao Y, Mi J, Clary BM, Li CY, Kontos CD, Dewhirst MW (2007) Systemic overexpression of angiopoietin-2 promotes tumor microvessel regression and inhibits angiogenesis and tumor growth. Cancer Res 67(8):3835–3844. doi:10.1158/0008-5472.CAN-06-4056

    Article  CAS  PubMed  Google Scholar 

  59. Zhang L, Yang N, Park JW, Katsaros D, Fracchioli S, Cao G, O’Brien-Jenkins A, Randall TC, Rubin SC, Coukos G (2003) Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res 63(12):3403–3412

    CAS  PubMed  Google Scholar 

  60. DeLeve LD, Wang X, Hu L, McCuskey MK, McCuskey RS (2004) Rat liver sinusoidal endothelial cell phenotype is maintained by paracrine and autocrine regulation. Am J Physiol Gastrointest Liver Physiol 287(4):G757–G763. doi:10.1152/ajpgi.00017.2004

    Article  CAS  PubMed  Google Scholar 

  61. Baffert F, Le T, Sennino B, Thurston G, Kuo CJ, Hu-Lowe D, McDonald DM (2006) Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am J Physiol Heart Circ Physiol 290(2):H547–H559. doi:10.1152/ajpheart.00616.2005

    Article  CAS  PubMed  Google Scholar 

  62. Kamba T, Tam BY, Hashizume H, Haskell A, Sennino B, Mancuso MR, Norberg SM, O’Brien SM, Davis RB, Gowen LC, Anderson KD, Thurston G, Joho S, Springer ML, Kuo CJ, McDonald DM (2006) VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol 290(2):H560–H576. doi:10.1152/ajpheart.00133.2005

    Article  CAS  PubMed  Google Scholar 

  63. Mejias M, Garcia-Pras E, Tiani C, Miquel R, Bosch J, Fernandez M (2009) Beneficial effects of sorafenib on splanchnic, intrahepatic, and portocollateral circulations in portal hypertensive and cirrhotic rats. Hepatology 49(4):1245–1256. doi:10.1002/hep.22758

    Article  CAS  PubMed  Google Scholar 

  64. Fernandez M, Vizzutti F, Garcia-Pagan JC, Rodes J, Bosch J (2004) Anti-VEGF receptor-2 monoclonal antibody prevents portal-systemic collateral vessel formation in portal hypertensive mice. Gastroenterology 126(3):886–894. doi:10.1053/j.gastro.2003.12.012

    Google Scholar 

  65. Korsisaari N, Kasman IM, Forrest WF, Pal N, Bai W, Fuh G, Peale FV, Smits R, Ferrara N (2007) Inhibition of VEGF-A prevents the angiogenic switch and results in increased survival of Apc+/min mice. Proc Natl Acad Sci USA 104(25):10625–10630. doi:10.1073/pnas.0704213104

    Article  CAS  PubMed  Google Scholar 

  66. Belcik JT, Qi Y, Kaufmann BA, Xie A, Bullens S, Morgan TK, Bagby SP, Kolumam G, Kowalski J, Oyer JA, Bunting S, Lindner JR (2012) Cardiovascular and systemic microvasculareffects of anti-vascular endothelial growth factor therapy for cancer. J Am Coll Cardiol 60(7):618–625. doi:10.1016/j.jacc.2012.02.053

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Genentech for kindly providing the G6-31 anti-VEGF mouse antibody; Dr. Lee Adamson (University of Toronto) for providing the blood pressure measurement instrument and software; Lily Morikawa, MLT Manager, Pathology Core Centre from Modeling Human Disease Toronto Centre for Phenogenomics (TCP) for expert design of the hepatic and cardiac computerized protocols; Qiang Xu and Napoleon Law (CMHD Pathology Core, TCP, Toronto) for expert computerized measurements of the cardiac and hepatic MVD and for CD31 staining, respectively; Dr. Susan Newbigging (Director, CMHD Pathology Core, Toronto Center for Phenogenomics, Toronto) for facilitating the usage of the Visiopharm Integrator System; Dr. Herman Yeger, for the use of the Olympus microscope; Clinton Hupper (VisualSonics, Toronto) for performing the pilot hepatic ultrasound measurements. We thank Dr. S. Paul Oh, University of Florida, for providing the Alk1 heterozygous mice. This work was supported by grants from the Canadian Institute of Health Research (CIHR) (MOP-6247) and the Heart and Stroke Foundation of Canada to ML (T5598), and from the Terry Fox Foundation, Visual Sonics Inc. and CIHR (MOP–12164) to FSF. D. Ardelean is the recipient of a CIHR/CAG/Abbott fellowship award.

Conflict of interest

Dr. Foster discloses that he is a consultant to VisualSonics Inc. The other authors declared no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Letarte.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 680 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ardelean, D.S., Jerkic, M., Yin, M. et al. Endoglin and activin receptor-like kinase 1 heterozygous mice have a distinct pulmonary and hepatic angiogenic profile and response to anti-VEGF treatment. Angiogenesis 17, 129–146 (2014). https://doi.org/10.1007/s10456-013-9383-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9383-4

Keywords

Navigation