Skip to main content

Advertisement

Log in

GATA2 and Lmo2 control angiogenesis and lymphangiogenesis via direct transcriptional regulation of neuropilin-2

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

GATA-binding protein 2 (GATA2) and LIM domain only 2 (Lmo2) form common transcription complexes during hematopoietic differentiation. Here we show that these two transcription factors also play a key role in endothelial cells (EC) and lymphatic EC (LEC) function. Primary EC and tumor-associated blood vessels expressed GATA2 and Lmo2. VEGF-induced sprouting angiogenesis in both differentiating embryonic stem cells (embryoid bodies) and primary EC increased GATA2 and Lmo2 levels. Conversely, silencing of GATA2 and Lmo2 expression in primary EC inhibited VEGF-induced angiogenic activity, including EC migration and sprouting in vitro, two key steps of angiogenesis in vivo. This inhibition of EC function was associated with downregulated expression of neuropilin-2 (NRP2), a co-receptor of VEGFRs for VEGF, at the protein, mRNA and promoter levels. NRP2 overexpression partially rescued the impaired angiogenic sprouting in the GATA2/Lmo2 knockdown EC, confirming that GATA2 and Lmo2 mediated EC function, at least in part, by directly regulating NRP2 gene expression. Furthermore, it was found that primary LEC expressed GATA2 and Lmo2 as well. Silencing of GATA2 and Lmo2 expression in LEC inhibited VEGF-induced LEC sprouting, also in a NRP2-dependent manner. In conclusion, our results demonstrate that GATA2 and Lmo2 cooperatively regulate VEGF-induced angiogenesis and lymphangiogenesis via NRP2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lugus JJ, Park C, Choi K (2005) Developmental relationship between hematopoietic and endothelial cells. Immunol Res 32(1–3):57–74. doi:10.1385/IR:32:1-3:057

    Article  PubMed  CAS  Google Scholar 

  2. Xiong JW (2008) Molecular and developmental biology of the hemangioblast. Dev Dyn 237(5):1218–1231. doi:10.1002/dvdy.21542

    Article  PubMed  CAS  Google Scholar 

  3. Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G (1998) A common precursor for hematopoietic and endothelial cells. Development 125(4):725–732

    PubMed  CAS  Google Scholar 

  4. Nishikawa SI (2001) A complex linkage in the developmental pathway of endothelial and hematopoietic cells. Curr Opin Cell Biol 13(6):673–678

    Article  PubMed  CAS  Google Scholar 

  5. Kubo H, Alitalo K (2003) The bloody fate of endothelial stem cells. Genes Dev 17(3):322–329. doi:10.1101/gad.1071203

    Article  PubMed  CAS  Google Scholar 

  6. Lugus JJ, Chung YS, Mills JC, Kim SI, Grass J, Kyba M, Doherty JM, Bresnick EH, Choi K (2007) GATA2 functions at multiple steps in hemangioblast development and differentiation. Development 134(2):393–405. doi:10.1242/dev.02731

    Article  PubMed  CAS  Google Scholar 

  7. Orkin SH (1992) GATA-binding transcription factors in hematopoietic cells. Blood 80(3):575–581

    PubMed  CAS  Google Scholar 

  8. Pandolfi PP, Roth ME, Karis A, Leonard MW, Dzierzak E, Grosveld FG, Engel JD, Lindenbaum MH (1995) Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet 11(1):40–44. doi:10.1038/ng0995-40

    Article  PubMed  CAS  Google Scholar 

  9. Pevny L, Lin CS, D’Agati V, Simon MC, Orkin SH, Costantini F (1995) Development of hematopoietic cells lacking transcription factor GATA-1. Development 121(1):163–172

    PubMed  CAS  Google Scholar 

  10. Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, Alt FW, Orkin SH (1994) An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371(6494):221–226. doi:10.1038/371221a0

    Article  PubMed  CAS  Google Scholar 

  11. Molkentin JD, Lin Q, Duncan SA, Olson EN (1997) Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 11(8):1061–1072

    Article  PubMed  CAS  Google Scholar 

  12. Molkentin JD, Tymitz KM, Richardson JA, Olson EN (2000) Abnormalities of the genitourinary tract in female mice lacking GATA5. Mol Cell Biol 20(14):5256–5260

    Article  PubMed  CAS  Google Scholar 

  13. Morrisey EE, Tang Z, Sigrist K, Lu MM, Jiang F, Ip HS, Parmacek MS (1998) GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev 12(22):3579–3590

    Article  PubMed  CAS  Google Scholar 

  14. Briegel K, Lim KC, Plank C, Beug H, Engel JD, Zenke M (1993) Ectopic expression of a conditional GATA-2/estrogen receptor chimera arrests erythroid differentiation in a hormone-dependent manner. Genes Dev 7(6):1097–1109

    Article  PubMed  CAS  Google Scholar 

  15. Kitajima K, Masuhara M, Era T, Enver T, Nakano T (2002) GATA-2 and GATA-2/ER display opposing activities in the development and differentiation of blood progenitors. EMBO J 21(12):3060–3069. doi:10.1093/emboj/cdf301

    Article  PubMed  CAS  Google Scholar 

  16. Tsai FY, Orkin SH (1997) Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 89(10):3636–3643

    PubMed  CAS  Google Scholar 

  17. Gumina RJ, Kirschbaum NE, Piotrowski K, Newman PJ (1997) Characterization of the human platelet/endothelial cell adhesion molecule-1 promoter: identification of a GATA-2 binding element required for optimal transcriptional activity. Blood 89(4):1260–1269

    PubMed  CAS  Google Scholar 

  18. Kawana M, Lee ME, Quertermous EE, Quertermous T (1995) Cooperative interaction of GATA-2 and AP1 regulates transcription of the endothelin-1 gene. Mol Cell Biol 15(8):4225–4231

    PubMed  CAS  Google Scholar 

  19. Lee ME, Temizer DH, Clifford JA, Quertermous T (1991) Cloning of the GATA-binding protein that regulates endothelin-1 gene expression in endothelial cells. J Biol Chem 266(24):16188–16192

    PubMed  CAS  Google Scholar 

  20. Mammoto A, Connor KM, Mammoto T, Yung CW, Huh D, Aderman CM, Mostoslavsky G, Smith LE, Ingber DE (2009) A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 457(7233):1103–1108. doi:10.1038/nature07765

    Article  PubMed  CAS  Google Scholar 

  21. Kappel A, Schlaeger TM, Flamme I, Orkin SH, Risau W, Breier G (2000) Role of SCL/Tal-1, GATA, and ets transcription factor binding sites for the regulation of flk-1 expression during murine vascular development. Blood 96(9):3078–3085

    PubMed  CAS  Google Scholar 

  22. Valge-Archer VE, Osada H, Warren AJ, Forster A, Li J, Baer R, Rabbitts TH (1994) The LIM protein RBTN2 and the basic helix-loop-helix protein TAL1 are present in a complex in erythroid cells. Proc Natl Acad Sci USA 91(18):8617–8621

    Article  PubMed  CAS  Google Scholar 

  23. Wadman I, Li J, Bash RO, Forster A, Osada H, Rabbitts TH, Baer R (1994) Specific in vivo association between the bHLH and LIM proteins implicated in human T cell leukemia. EMBO J 13(20):4831–4839

    PubMed  CAS  Google Scholar 

  24. Visvader JE, Mao X, Fujiwara Y, Hahm K, Orkin SH (1997) The LIM-domain binding protein Ldb1 and its partner LMO2 act as negative regulators of erythroid differentiation. Proc Natl Acad Sci USA 94(25):13707–13712

    Article  PubMed  CAS  Google Scholar 

  25. Lecuyer E, Herblot S, Saint-Denis M, Martin R, Begley CG, Porcher C, Orkin SH, Hoang T (2002) The SCL complex regulates c-kit expression in hematopoietic cells through functional interaction with Sp1. Blood 100(7):2430–2440. doi:10.1182/blood-2002-02-0568

    Article  PubMed  CAS  Google Scholar 

  26. Wadman IA, Osada H, Grutz GG, Agulnick AD, Westphal H, Forster A, Rabbitts TH (1997) The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J 16(11):3145–3157. doi:10.1093/emboj/16.11.3145

    Article  PubMed  CAS  Google Scholar 

  27. Deleuze V, Chalhoub E, El-Hajj R, Dohet C, Le Clech M, Couraud PO, Huber P, Mathieu D (2007) TAL-1/SCL and its partners E47 and LMO2 up-regulate VE-cadherin expression in endothelial cells. Mol Cell Biol 27(7):2687–2697. doi:10.1128/MCB.00493-06

    Article  PubMed  CAS  Google Scholar 

  28. Deleuze V, El-Hajj R, Chalhoub E, Dohet C, Pinet V, Couttet P, Mathieu D (2012) Angiopoietin-2 is a direct transcriptional target of TAL1, LYL1 and LMO2 in endothelial cells. PLoS ONE 7(7):e40484. doi:10.1371/journal.pone.0040484

    Article  PubMed  CAS  Google Scholar 

  29. Warren AJ, Colledge WH, Carlton MB, Evans MJ, Smith AJ, Rabbitts TH (1994) The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell 78(1):45–57

    Article  PubMed  CAS  Google Scholar 

  30. Yamada Y, Warren AJ, Dobson C, Forster A, Pannell R, Rabbitts TH (1998) The T cell leukemia LIM protein Lmo2 is necessary for adult mouse hematopoiesis. Proc Natl Acad Sci USA 95(7):3890–3895

    Article  PubMed  CAS  Google Scholar 

  31. Yamada Y, Pannell R, Forster A, Rabbitts TH (2000) The oncogenic LIM-only transcription factor Lmo2 regulates angiogenesis but not vasculogenesis in mice. Proc Natl Acad Sci USA 97(1):320–324

    Article  PubMed  CAS  Google Scholar 

  32. Yamada Y, Pannell R, Forster A, Rabbitts TH (2002) The LIM-domain protein Lmo2 is a key regulator of tumour angiogenesis: a new anti-angiogenesis drug target. Oncogene 21(9):1309–1315. doi:10.1038/sj.onc.1205285

    Article  PubMed  CAS  Google Scholar 

  33. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676. doi:10.1038/nm0603-669

    Article  PubMed  CAS  Google Scholar 

  34. Ferrara N, Mass RD, Campa C, Kim R (2007) Targeting VEGF-A to treat cancer and age-related macular degeneration. Annu Rev Med 58:491–504. doi:10.1146/annurev.med.58.061705.145635

    Article  PubMed  CAS  Google Scholar 

  35. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476. doi:10.1016/j.cell.2010.01.045

    Article  PubMed  CAS  Google Scholar 

  36. Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, Jeltsch M, Jackson DG, Talikka M, Rauvala H, Betsholtz C, Alitalo K (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5(1):74–80. doi:10.1038/ni1013

    Article  PubMed  CAS  Google Scholar 

  37. Kazenwadel J, Secker GA, Liu YJ, Rosenfeld JA, Wildin RS, Cuellar-Rodriguez J, Hsu AP, Dyack S, Fernandez CV, Chong CE, Babic M, Bardy PG, Shimamura A, Zhang MY, Walsh T, Holland SM, Hickstein DD, Horwitz MS, Hahn CN, Scott HS, Harvey NL (2011) Loss-of-function germline GATA2 mutations in patients with MDS/AML or MonoMAC syndrome and primary lymphedema reveal a key role for GATA2 in the lymphatic vasculature. Blood 119(5):1283–1291. doi:10.1182/blood-2011-08-374363

    Article  PubMed  Google Scholar 

  38. Lim KC, Hosoya T, Brandt W, Ku CJ, Hosoya-Ohmura S, Camper SA, Yamamoto M, Engel JD (2012) Conditional Gata2 inactivation results in HSC loss and lymphatic mispatterning. J Clin Invest 122(10):3705–3717. doi:10.1172/JCI61619

    Article  PubMed  CAS  Google Scholar 

  39. Ostergaard P, Simpson MA, Connell FC, Steward CG, Brice G, Woollard WJ, Dafou D, Kilo T, Smithson S, Lunt P, Murday VA, Hodgson S, Keenan R, Pilz DT, Martinez-Corral I, Makinen T, Mortimer PS, Jeffery S, Trembath RC, Mansour S (2011) Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat Genet 43(10):929–931. doi:10.1038/ng.923

    Article  PubMed  CAS  Google Scholar 

  40. Ishida H, Imai K, Honma K, Tamura S, Imamura T, Ito M, Nonoyama S (2012) GATA-2 anomaly and clinical phenotype of a sporadic case of lymphedema, dendritic cell, monocyte, B- and NK-cell (DCML) deficiency, and myelodysplasia. Eur J Pediatr 171(8):1273–1276. doi:10.1007/s00431-012-1715-7

    Article  PubMed  CAS  Google Scholar 

  41. Klagsbrun M, Eichmann A (2005) A role for axon guidance receptors and ligands in blood vessel development and tumor angiogenesis. Cytokine Growth Factor Rev 16(4–5):535–548. doi:10.1016/j.cytogfr.2005.05.002

    Article  PubMed  CAS  Google Scholar 

  42. Ellis LM (2006) The role of neuropilins in cancer. Mol Cancer Ther 5(5):1099–1107. doi:10.1158/1535-7163.MCT-05-0538

    Article  PubMed  CAS  Google Scholar 

  43. Guttmann-Raviv N, Kessler O, Shraga-Heled N, Lange T, Herzog Y, Neufeld G (2006) The neuropilins and their role in tumorigenesis and tumor progression. Cancer Lett 231(1):1–11. doi:10.1016/j.canlet.2004.12.047

    Article  PubMed  CAS  Google Scholar 

  44. Gaur P, Bielenberg DR, Samuel S, Bose D, Zhou Y, Gray MJ, Dallas NA, Fan F, Xia L, Lu J, Ellis LM (2009) Role of class 3 semaphorins and their receptors in tumor growth and angiogenesis. Clin Cancer Res 15(22):6763–6770. doi:10.1158/1078-0432.CCR-09-1810

    Article  PubMed  CAS  Google Scholar 

  45. Yuan L, Moyon D, Pardanaud L, Breant C, Karkkainen MJ, Alitalo K, Eichmann A (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129(20):4797–4806

    PubMed  CAS  Google Scholar 

  46. Kawasaki T, Kitsukawa T, Bekku Y, Matsuda Y, Sanbo M, Yagi T, Fujisawa H (1999) A requirement for neuropilin-1 in embryonic vessel formation. Development 126(21):4895–4902

    PubMed  CAS  Google Scholar 

  47. Takashima S, Kitakaze M, Asakura M, Asanuma H, Sanada S, Tashiro F, Niwa H, Miyazaki Ji J, Hirota S, Kitamura Y, Kitsukawa T, Fujisawa H, Klagsbrun M, Hori M (2002) Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis. Proc Natl Acad Sci USA 99(6):3657–3662. doi:10.1073/pnas.022017899

    Article  PubMed  CAS  Google Scholar 

  48. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92(6):735–745

    Article  PubMed  CAS  Google Scholar 

  49. Geretti E, Shimizu A, Klagsbrun M (2008) Neuropilin structure governs VEGF and semaphorin binding and regulates angiogenesis. Angiogenesis 11(1):31–39. doi:10.1007/s10456-008-9097-1

    Article  PubMed  CAS  Google Scholar 

  50. Kawamura H, Li X, Goishi K, van Meeteren LA, Jakobsson L, Cebe-Suarez S, Shimizu A, Edholm D, Ballmer-Hofer K, Kjellen L, Klagsbrun M, Claesson-Welsh L (2008) Neuropilin-1 in regulation of VEGF-induced activation of p38MAPK and endothelial cell organization. Blood 112(9):3638–3649. doi:10.1182/blood-2007-12-125856

    Article  PubMed  CAS  Google Scholar 

  51. Favier B, Alam A, Barron P, Bonnin J, Laboudie P, Fons P, Mandron M, Herault JP, Neufeld G, Savi P, Herbert JM, Bono F (2006) Neuropilin-2 interacts with VEGFR-2 and VEGFR-3 and promotes human endothelial cell survival and migration. Blood 108(4):1243–1250. doi:10.1182/blood-2005-11-4447

    Article  PubMed  CAS  Google Scholar 

  52. Xu Y, Yuan L, Mak J, Pardanaud L, Caunt M, Kasman I, Larrivee B, Del Toro R, Suchting S, Medvinsky A, Silva J, Yang J, Thomas JL, Koch AW, Alitalo K, Eichmann A, Bagri A (2010) Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J Cell Biol 188(1):115–130. doi:10.1083/jcb.200903137

    Article  PubMed  CAS  Google Scholar 

  53. Dudley AC, Khan ZA, Shih SC, Kang SY, Zwaans BM, Bischoff J, Klagsbrun M (2008) Calcification of multipotent prostate tumor endothelium. Cancer Cell 14(3):201–211. doi:10.1016/j.ccr.2008.06.017

    Article  PubMed  CAS  Google Scholar 

  54. Li X, Claesson-Welsh L, Shibuya M (2008) VEGF receptor signal transduction. Methods Enzymol 443:261–284. doi:10.1016/S0076-6879(08)02013-2

    Article  PubMed  CAS  Google Scholar 

  55. Bielenberg DR, Hida Y, Shimizu A, Kaipainen A, Kreuter M, Kim CC, Klagsbrun M (2004) Semaphorin 3F, a chemorepulsant for endothelial cells, induces a poorly vascularized, encapsulated, nonmetastatic tumor phenotype. J Clin Invest 114(9):1260–1271. doi:10.1172/JCI21378

    PubMed  CAS  Google Scholar 

  56. Coma S, Shimizu A, Klagsbrun M (2011) Hypoxia induces tumor and endothelial cell migration in a semaphorin 3F- and VEGF-dependent manner via transcriptional repression of their common receptor neuropilin 2. Cell Adh Migr 5(3):266–275

    Article  PubMed  Google Scholar 

  57. Rossignol M, Gagnon ML, Klagsbrun M (2000) Genomic organization of human neuropilin-1 and neuropilin-2 genes: identification and distribution of splice variants and soluble isoforms. Genomics 70(2):211–222. doi:10.1006/geno.2000

    Article  PubMed  CAS  Google Scholar 

  58. Jakobsson L, Kreuger J, Claesson-Welsh L (2007) Building blood vessels–stem cell models in vascular biology. J Cell Biol 177(5):751–755. doi:10.1083/jcb.200701146

    Article  PubMed  CAS  Google Scholar 

  59. Geretti E, van Meeteren LA, Shimizu A, Dudley AC, Claesson-Welsh L, Klagsbrun M (2010) A mutated soluble neuropilin-2 B domain antagonizes vascular endothelial growth factor bioactivity and inhibits tumor progression. Mol Cancer Res 8(8):1063–1073. doi:10.1158/1541-7786.MCR-10-0157

    Article  PubMed  CAS  Google Scholar 

  60. Caunt M, Mak J, Liang WC, Stawicki S, Pan Q, Tong RK, Kowalski J, Ho C, Reslan HB, Ross J, Berry L, Kasman I, Zlot C, Cheng Z, Le Couter J, Filvaroff EH, Plowman G, Peale F, French D, Carano R, Koch AW, Wu Y, Watts RJ, Tessier-Lavigne M, Bagri A (2008) Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell 13(4):331–342. doi:10.1016/j.ccr.2008.01.029

    Article  PubMed  CAS  Google Scholar 

  61. Johnson KD, Hsu AP, Ryu MJ, Wang J, Gao X, Boyer ME, Liu Y, Lee Y, Calvo KR, Keles S, Zhang J, Holland SM, Bresnick EH (2012) Cis-element mutated in GATA2-dependent immunodeficiency governs hematopoiesis and vascular integrity. J Clin Invest 122(10):3692–3704. doi:10.1172/JCI61623

    Article  PubMed  CAS  Google Scholar 

  62. Hong YK, Harvey N, Noh YH, Schacht V, Hirakawa S, Detmar M, Oliver G (2002) Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 225(3):351–357. doi:10.1002/dvdy.10163

    Article  PubMed  CAS  Google Scholar 

  63. Lin FJ, Chen X, Qin J, Hong YK, Tsai MJ, Tsai SY (2010) Direct transcriptional regulation of neuropilin-2 by COUP-TFII modulates multiple steps in murine lymphatic vessel development. J Clin Invest 120(5):1694–1707. doi:10.1172/JCI40101

    Article  PubMed  CAS  Google Scholar 

  64. You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY (2005) Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435(7038):98–104. doi:10.1038/nature03511

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Lena Claesson-Welsh (Department of Immunology, Genetics and Pathology, Uppsala University) for critical reading of the manuscript, and Melissa Anderson and Kristin Johnson for preparation of the manuscript and for artwork. Research reported in this publication was supported by the National Institutes of Health under award numbers CA37392 and CA45548 (M.K.). This content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Klagsbrun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 326 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coma, S., Allard-Ratick, M., Akino, T. et al. GATA2 and Lmo2 control angiogenesis and lymphangiogenesis via direct transcriptional regulation of neuropilin-2. Angiogenesis 16, 939–952 (2013). https://doi.org/10.1007/s10456-013-9370-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9370-9

Keywords

Navigation