Skip to main content

Advertisement

Log in

Erythropoietin is involved in the angiogenic potential of bone marrow macrophages in multiple myeloma

  • Brief Communication
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Erythropoietin (Epo) is the crucial cytokine regulator of red blood cell production, and recombinant human erythropoietin (rHuEpo) is widely used in clinical practice for the treatment of anemia, primarily in kidney disease and in cancer. Increasing evidence suggests several biological roles for Epo and its receptor, Epo-R, unrelated to erythropoiesis, including angiogenesis. Epo-R has been found expressed in various non-haematopoietic cells and tissues, and in cancer cells. Here, we detected the expression of Epo-R in bone marrow-derived macrophages (BMMAs) from multiple myeloma (MM) and monoclonal gammopathy of undetermined significance (MGUS) patients and assessed whether Epo/Epo-R axis plays a role in MM macrophage-mediated angiogenesis. We found that Epo-R is over-expressed in BMMAs from MM patients with active disease compared to MGUS patients. The treatment of BMMAs with rHuEpo significantly increased the expression and secretion of key pro-angiogenic mediators, such as vascular endothelial growth factor, hepatocyte growth factor and monocyte chemotactic protein (MCP-1/CCL-2), through activation of JAK2/STAT5 and PI3 K/Akt pathways. In addition, the conditioned media harvested from rHuEpo-treated BMMAs enhanced bone marrow-derived endothelial cell migration and capillary morphogenesis in vitro, and induced angiogenesis in the chorioallantoic membrane of chick embryos in vivo. Furthermore, we found an increase in the circulating levels of several pro-angiogenic cytokines in serum of MM patients with anemia under treatment with Epo. Our findings highlight the direct effect of rHuEpo on macrophage-mediated production of pro-angiogenic factors, suggesting that Epo/Epo-R pathway may be involved in the regulation of angiogenic response occurring in MM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Vacca A, Ribatti D, Roncali L et al (1994) Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 87(3):503–508

    Article  CAS  PubMed  Google Scholar 

  2. Ribatti D, Nico B, Crivellato E, Roccaro AM, Vacca A (2007) The history of the angiogenic switch concept. Leukemia 21(1):44–52

    Article  CAS  PubMed  Google Scholar 

  3. Vacca A, Ribatti D (2006) Bone marrow angiogenesis in multiple myeloma. Leukemia 20(2):193–199

    Article  CAS  PubMed  Google Scholar 

  4. Ribatti D, Nico B, Vacca A (2006) Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene 25(31):4257–4266

    Article  CAS  PubMed  Google Scholar 

  5. Scavelli C, Nico B, Cirulli T et al (2008) Vasculogenic mimicry by bone marrow macrophages in patients with multiple myeloma. Oncogene 27(5):663–674

    Article  CAS  PubMed  Google Scholar 

  6. Ribatti D (2012) Angiogenic effects of erythropoietin. Int Rev Cell Mol Biol 299:199–234

    Article  CAS  PubMed  Google Scholar 

  7. Lifshitz L, Tabak G, Gassmann M, Mittelman M, Neumann D (2010) Macrophages as a novel target for erythropoietin. Haematologica 95(11):1823–1831

    Article  CAS  PubMed  Google Scholar 

  8. Vacca A, Ria R, Semeraro F et al (2003) Endothelial cells in the bone marrow of patients with multiple myeloma. Blood 102(9):3340–3348

    Article  CAS  PubMed  Google Scholar 

  9. Moschetta M, Di Pietro G, Ria R et al (2010) Bortezomib and zoledronic acid on angiogenic and vasculogenic activities of bone marrow macrophages in patients with multiple myeloma. Eur J Cancer 46(2):420–429

    Article  CAS  PubMed  Google Scholar 

  10. De Luisi A, Ferrucci A, Coluccia AML et al (2011) Lenalidomide restrains motility and overangiogenic potential of bone marrow endothelial cells in patients with active multiple myeloma. Clin Cancer Res 17(7):1935–1946

    Article  PubMed  Google Scholar 

  11. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  12. Ribatti D, Nico B, Vacca A, Presta M (2006) The gelatin sponge-chorioallantoic membrane assay. Nat Protoc 1(1):85–91

    Article  CAS  PubMed  Google Scholar 

  13. Elliott S, Sinclair AM (2012) The effect of erythropoietin on normal and neoplastic cells. Biologics 6:163–189

    CAS  PubMed  Google Scholar 

  14. Ribatti D, Presta M, Vacca A et al (1999) Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood 93(8):2627–2636

    CAS  PubMed  Google Scholar 

  15. Perelman N, Selvaraj SK, Batra S et al (2003) Placenta growth factor activates monocytes and correlates with sickle disease severity. Blood 102(4):1506–1514

    Article  CAS  PubMed  Google Scholar 

  16. Okazaki T, Ebihara S, Asada M, Yamanda S, Niu K, Arai H (2008) Erythropoietin promotes the growth of tumors lacking its receptor and decreases survival of tumor-bearing mice by enhancing angiogenesis. Neoplasia 10(9):932–939

    CAS  PubMed  Google Scholar 

  17. Blackwell KL, Kirkpatrick JP, Snyder SA et al (2003) Human recombinant erythropoietin significantly improves tumor oxygenation independent of its effects on hemoglobin. Cancer Res 63(19):6162–6165

    CAS  PubMed  Google Scholar 

  18. Hardee ME, Cao Y, Fu P et al (2007) Erythropietin blockade inhibits the induction of tumor angiogenesis and progression. PLoS ONE 2(6):e549

    Article  PubMed  Google Scholar 

  19. Xue Y, Lim S, Yang Y et al (2011) PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells. Nat Med 18(1):100–110

    Article  PubMed  Google Scholar 

  20. Ribatti D, Marzullo A, Nico B, Crivellato E, Ria R, Vacca A (2003) Erytropoietin is an angiogenic factor in gastric carcinoma. Histopathology 42(3):246–250

    Article  CAS  PubMed  Google Scholar 

  21. Ribatti D, Marzullo A, Gentile A et al (2007) Erytropoietin/erytropoietin-receptor system is involved in angiogenesis in human hepatocellular carcinoma. Histopathology 50(5):591–596

    Article  CAS  PubMed  Google Scholar 

  22. Ribatti D, Poliani PL, Longo V, Mangieri D, Nico B, Vacca A (2007) Erythropoietin/erythropoietin-receptor system is involved in angiogenesis in human neuroblastoma. Histopathology 50(5):636–641

    Article  CAS  PubMed  Google Scholar 

  23. Ribatti D, Nico B, Perra MT et al (2010) Erytropoietin is involved in angiogenesis in human primary melanoma. Int J Exp Pathol 91(6):495–499

    Article  CAS  PubMed  Google Scholar 

  24. Nico B, Annese T, Guidolin D, Finato N, Crivellato E, Ribatti D (2011) Epo is involved in angiogenesis in human glioma. J Neurooncol 102(1):51–58

    Article  CAS  PubMed  Google Scholar 

  25. Yang J, Xiao Z, Li T, Gu X, Fan B (2012) Erytropoietin promotes the growth of pituitary adenomas by enhancing angiogenesis. Int J Oncol 40(4):1230–1237

    CAS  PubMed  Google Scholar 

  26. Ribatti D, Crivellato E, Nico B, Guidolin D, Gassmann M, Djonov V (2009) Mast cells and macrophages in duodenal mucosa of mice overexpressing erythropoietin. J Anat 215(5):548–554

    Article  CAS  PubMed  Google Scholar 

  27. Bogdanova A, Mihov D, Lutz H, Saam B, Gassmann M, Vogel J (2007) Enhanced erythro-phagocytosis in polycythemic mice overexpressing erythropoietin. Blood 110(2):762–769

    Article  CAS  PubMed  Google Scholar 

  28. Haroon ZA, Amin K, Jiang X, Arcasoy MO (2003) A novel role for erythropoietin during fibrin-induced wound-healing response. Am J Pathol 163(3):993–1000

    Article  CAS  PubMed  Google Scholar 

  29. Olujihungle A, Handa S, Holmes J (1997) Does erythropoietin accelerate malignant transformation in multiple myeloma? Postgrad Med J 73(857):163–164

    Article  Google Scholar 

  30. Bunworasate U, Arnouk H, Minderman H et al (2001) Erythopoietin-dependent transformation of myelodysplastic syndrome to acute monoblastic leukemia. Blood 98(12):3492–3494

    Article  CAS  PubMed  Google Scholar 

  31. Mittelman M, Zeidman A, Fradin Z, Magazanik A, Lewinski UH, Cohen A (1997) Recombinant human erythropoietin in the treatment of multiple myeloma-associated anemia. Acta Haematol 98(4):204–210

    Article  CAS  PubMed  Google Scholar 

  32. Mittelman M, Neumann D, Peled A, Kanter P, Haran-Ghera N (2001) Erythropoietin induces tumor regression and antitumor immune responses in murine myeloma models. Proc Natl Acad Sci USA 98(9):5181–5186

    Article  CAS  PubMed  Google Scholar 

  33. Prutchi-Sagiv S, Golishevsky N, Oster HS et al (2006) Erytropoietin treatment in advanced multiple myeloma is associated with improved immunological functions: could it be beneficial in early disease? Br J Haematol 135(5):660–672

    Article  CAS  PubMed  Google Scholar 

  34. Katz O, Barzilay E, Skaat A, Herman A, Mittelman M, Neumann D (2005) Erytropoietin induced tumor mass reduction in murine lymphoproliferative models. Acta Haematol 114(3):177–179

    Article  PubMed  Google Scholar 

  35. Katz O, Gil L, Lifshitz L et al (2007) Erytropoietin enhances immune responses in mice. Eur J Immunol 37(6):1584–1593

    Article  CAS  PubMed  Google Scholar 

  36. Leyland-Jones B (2003) Breast cancer trial with erythropoietin terminated unexpectedly. Lancet Oncol 4(8):459–460

    Article  PubMed  Google Scholar 

  37. Powles T, Shamash J, Liu W (2004) Erytropoietin to treat anemia in patients with head and neck cancer. Lancet 363(9402):82

    Article  PubMed  Google Scholar 

  38. Cao Y (2013) Erytropoietin in cancer: a dilemma in risk therapy. Trends Endocrinol Metab 24(4):190–199

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Associazione Italiana per la Ricerca sul Cancro, Investigator Grant and Special Program Molecular Clinical Oncology five per mille n.9965, Milan, Italy; the Ministry of Health (Progetto PRIN 2012 to AV), Rome, Italy; and European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement n.278570 to DR and n.278706 to AV. The sponsors of this study are public or non-profit organizations that support science in general. They had no role in gathering, analyzing or interpreting the data. The authors are fully responsible for the content and editorial decisions for this manuscript.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Ribatti.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Luisi, A., Binetti, L., Ria, R. et al. Erythropoietin is involved in the angiogenic potential of bone marrow macrophages in multiple myeloma. Angiogenesis 16, 963–973 (2013). https://doi.org/10.1007/s10456-013-9369-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9369-2

Keywords

Navigation