Skip to main content
Log in

p55PIK-PI3K stimulates angiogenesis in colorectal cancer cell by activating NF-κB pathway

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Vascular growth factor (VEGF) is an important mediator of angiogenesis. PI3K plays essential roles in angiogenesis; however, the mechanisms and specific functions of individual isoforms of PI3K members in tumor angiogenesis regulation are still not fully understood. In this study, we evaluate the role of p55PIK, a PI3K regulatory subunit encoded by PIK3R3 gene, in tumor angiogenesis. We reported that overexpression of p55PIK in cancer cells up-regulated HIF-1α expression and increased VEGF expression. Furthermore, overexpression of p55PIK increased tumor angiogenesis in vivo and in vitro. Moreover, data indicated enhanced HIF-1α expression by p55PIK-PI3K depended on its ability to activate NF-кB signaling pathways, especially to increase the phosphorylation of p65 subunits of NF-κB. Our study suggested that p55PIK-PI3K was essential in regulating cancer cell-mediated angiogenesis and contributed to tumor growth and that the p55PIK provides a potential and specific target for new anti-angiogenesis drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anderson DH (2010) p85 Plays a critical role in controlling flux through the PI3K/PTEN signaling axis through dual regulation of both p110 (PI3K) and PTEN. Cell Cycle 9:2055–2056

    Google Scholar 

  2. Berenjeno IM, Vanhaesebroeck B (2009) PI3K regulatory subunits lose control in cancer. Cancer Cell 16:449–450

    Article  PubMed  Google Scholar 

  3. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  PubMed  CAS  Google Scholar 

  4. Bikfalvi A (2006) Angiogenesis: health and disease. Ann Oncol 17(Suppl 10):x65–x70

    Article  PubMed  Google Scholar 

  5. Bunney TD, Katan M (2010) Phosphoinositide signalling in cancer: beyond PI3K and PTEN. Nat Rev Cancer 10:342–352

    Article  PubMed  CAS  Google Scholar 

  6. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    Article  PubMed  CAS  Google Scholar 

  7. Cook KM, Figg WD (2010) Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin 60:222–243

    Article  PubMed  Google Scholar 

  8. Courtney KD, Corcoran RB, Engelman JA (2010) The PI3K pathway as drug target in human cancer. J Clin Oncol 28:1075–1083

    Article  PubMed  CAS  Google Scholar 

  9. Dayan F, Bilton RL, Laferriere J et al (2009) Activation of HIF-1alpha in exponentially growing cells via hypoxic stimulation is independent of the Akt/mTOR pathway. J Cell Physiol 218:167–174

    Article  PubMed  CAS  Google Scholar 

  10. Du J, Xu R, Hu Z et al (2011) PI3K and ERK-induced Rac1 activation mediates hypoxia-induced HIF-1alpha expression in MCF-7 breast cancer cells. PLoS One 6:e25213

    Article  PubMed  CAS  Google Scholar 

  11. Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8:579–591

    Article  PubMed  CAS  Google Scholar 

  12. Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364:656–665

    Article  PubMed  CAS  Google Scholar 

  13. Fang J, Ding M, Yang L et al (2007) PI3K/PTEN/AKT signaling regulates prostate tumor angiogenesis. Cell Signal 19:2487–2497

    Article  PubMed  CAS  Google Scholar 

  14. Foukas LC, Berenjeno IM, Gray A et al (2010) Activity of any class IA PI3K isoform can sustain cell proliferation and survival. Proc Natl Acad Sci U S A 107:11381–11386

    Article  PubMed  CAS  Google Scholar 

  15. Grothey A, Galanis E (2009) Targeting angiogenesis: progress with anti-VEGF treatment with large molecules. Nat Rev Clin Oncol 6:507–518

    Article  PubMed  CAS  Google Scholar 

  16. Hamada K, Sasaki T, Koni PA et al (2005) The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes Dev 19:2054–2065

    Article  PubMed  CAS  Google Scholar 

  17. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027

    Article  PubMed  CAS  Google Scholar 

  18. Hu J, Liu S, Wang J et al (2005) Overexpression of the N-terminal end of the p55gamma regulatory subunit of phosphatidylinositol 3-kinase blocks cell cycle progression in gastric carcinoma cells. Int J Oncol 26:1321–1327

    PubMed  CAS  Google Scholar 

  19. Hu J, Xia X, Cheng A et al (2008) A peptide inhibitor derived from p55PIK phosphatidylinositol 3-kinase regulatory subunit: a novel cancer therapy. Mol Cancer Ther 7:3719–3728

    Article  PubMed  CAS  Google Scholar 

  20. Hubbard J, Grothey A (2010) Antiangiogenesis agents in colorectal cancer. Curr Opin Oncol 22:374–380

    Article  PubMed  CAS  Google Scholar 

  21. Jia S, Liu Z, Zhang S et al (2008) Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 454:776–779

    PubMed  CAS  Google Scholar 

  22. Jiang BH, Liu LZ (2009) PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res 102:19–65

    Article  PubMed  CAS  Google Scholar 

  23. Karar J, Maity A (2011) PI3K/AKT/mTOR Pathway in Angiogenesis. Front Mol Neurosci 4:51

    Article  PubMed  CAS  Google Scholar 

  24. Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358:2039–2049

    Article  PubMed  CAS  Google Scholar 

  25. Kloo B, Nagel D, Pfeifer M et al (2011) Critical role of PI3K signaling for NF-kappaB-dependent survival in a subset of activated B-cell-like diffuse large B-cell lymphoma cells. Proc Natl Acad Sci U S A 108:272–277

    Article  PubMed  CAS  Google Scholar 

  26. Lawrence T, Bebien M, Liu GY et al (2005) IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation. Nature 434:1138–1143

    Article  PubMed  CAS  Google Scholar 

  27. Marone R, Cmiljanovic V, Giese B et al (2008) Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta 1784:159–185

    Article  PubMed  CAS  Google Scholar 

  28. Maxwell PH, Dachs GU, Gleadle JM et al (1997) Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci U S A 94:8104–8109

    Article  PubMed  CAS  Google Scholar 

  29. Menakuru SR, Brown NJ, Staton CA et al (2008) Angiogenesis in pre-malignant conditions. Br J Cancer 99:1961–1966

    Article  PubMed  CAS  Google Scholar 

  30. Mitchell DC, Bryan BA (2010) Anti-angiogenic therapy: adapting strategies to overcome resistant tumors. J Cell Biochem 111:543–553

    Article  PubMed  CAS  Google Scholar 

  31. Mylonis I, Chachami G, Paraskeva E et al (2008) Atypical CRM1-dependent nuclear export signal mediates regulation of hypoxia-inducible factor-1alpha by MAPK. J Biol Chem 283:27620–27627

    Article  PubMed  CAS  Google Scholar 

  32. Okumura N, Yoshida H, Kitagishi Y et al (2012) PI3K/AKT/PTEN signaling as a molecular target in leukemia angiogenesis. Adv Hematol 2012:843085

    PubMed  Google Scholar 

  33. Pufe T, Lemke A, Kurz B et al (2004) Mechanical overload induces VEGF in cartilage discs via hypoxia-inducible factor. Am J Pathol 164:185–192

    Article  PubMed  CAS  Google Scholar 

  34. Rhodes DR, Yu J, Shanker K et al (2004) Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci U S A 101:9309–9314

    Article  PubMed  CAS  Google Scholar 

  35. Rhodes DR, Yu J, Shanker K et al (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6:1–6

    PubMed  CAS  Google Scholar 

  36. Sakurai H, Chiba H, Miyoshi H et al (1999) IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain. J Biol Chem 274:30353–30356

    Article  PubMed  CAS  Google Scholar 

  37. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C (T) method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  38. Skrzypczak M, Goryca K, Rubel T et al (2010) Modeling oncogenic signaling in colon tumors by multidirectional analyses of microarray data directed for maximization of analytical reliability. Plos One 5:e13091

    Google Scholar 

  39. Tian T, Nan KJ, Wang SH et al (2010) PTEN regulates angiogenesis and VEGF expression through phosphatase-dependent and -independent mechanisms in HepG2 cells. Carcinogenesis 31:1211–1219

    Article  PubMed  Google Scholar 

  40. Tsuzuki Y, Fukumura D, Oosthuyse B et al (2000) Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1alpha–> hypoxia response element–> VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res 60:6248–6252

    PubMed  CAS  Google Scholar 

  41. Van Uden P, Kenneth NS, Rocha S (2008) Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. Biochem J 412:477–484

    Article  PubMed  Google Scholar 

  42. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M et al (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Bio 11:329–341

    Article  CAS  Google Scholar 

  43. Wang G, Deng Y, Cao X et al (2012) Blocking p55PIK Signaling inhibits proliferation and induces differentiation of leukemia cells. Cell Death Differ 19:1870–1879

    Google Scholar 

  44. Wee S, Wiederschain D, Maira SM et al (2008) PTEN-deficient cancers depend on PIK3CB. Proc Natl Acad Sci U S A 105:13057–13062

    Article  PubMed  CAS  Google Scholar 

  45. Weidner N, Semple JP, Welch WR et al (1991) Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med 324:1–8

    Article  PubMed  CAS  Google Scholar 

  46. Winder T, Lenz HJ (2010) Vascular endothelial growth factor and epidermal growth factor signaling pathways as therapeutic targets for colorectal cancer. Gastroenterology 138:2163–2176

    Article  PubMed  CAS  Google Scholar 

  47. Xia X, Cheng A, Akinmade D et al (2003) The N-terminal 24 amino acids of the p55 gamma regulatory subunit of phosphoinositide 3-kinase binds Rb and induces cell cycle arrest. Mol Cell Biol 23:1717–1725

    Article  PubMed  CAS  Google Scholar 

  48. Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27:5497–5510

    Article  PubMed  CAS  Google Scholar 

  49. Zhang L, Huang J, Yang N et al (2007) Integrative genomic analysis of phosphatidylinositol 3′-kinase family identifies PIK3R3 as a potential therapeutic target in epithelial ovarian cancer. Clin Cancer Res 13:5314–5321

    Article  PubMed  CAS  Google Scholar 

  50. Zhao L, Vogt PK (2008) Class I PI3K in oncogenic cellular transformation. Oncogene 27:5486–5496

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants of foundation of “973” Program (No. 2009CB521802), National Natural Science foundation (No. 30872472, No.30973496, No.81172512, No.81272278, and No.31000612). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

Authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Gong or Junbo Hu.

Additional information

Guihua Wang and Cheng Chen contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Chen, C., Yang, R. et al. p55PIK-PI3K stimulates angiogenesis in colorectal cancer cell by activating NF-κB pathway. Angiogenesis 16, 561–573 (2013). https://doi.org/10.1007/s10456-013-9336-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9336-y

Keywords

Navigation