Skip to main content
Log in

In vivo laser speckle imaging reveals microvascular remodeling and hemodynamic changes during wound healing angiogenesis

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Laser speckle contrast imaging (LSCI) is a high-resolution and high contrast optical imaging technique often used to characterize hemodynamic changes in short-term physiological experiments. In this study, we demonstrate the utility of LSCI for characterizing microvascular remodeling and hemodynamic changes during wound healing angiogenesis in vivo. A 2 mm diameter hole was made in the mouse ear and the periphery of the wound imaged in vivo using LSCI over 12 days. We were able to visualize and quantify the vascular and perfusion changes that accompanied wound healing in the microenvironment proximal to the wound, and validated these changes with histology. We found that consistent with the stages of wound healing, microvessel density increased during the initial inflammatory phase (i.e., day 0–3), stayed elevated through the tissue formation phase (i.e., until day 7) and returned to baseline during the tissue remodeling phase (i.e., by day 12). Concomitant “wide area mapping” of blood flow revealed that tissue perfusion in the wound periphery initially decreased, gradually increased from day 3–7, and subsided as healing completed. Interestingly, some regions exhibited a reestablishment of tissue perfusion approximately 6 days earlier than the ~18 days usually reported for the long term remodeling phase. The results from this study demonstrate that LSCI is an ideal platform for elucidating in vivo changes in microvascular hemodynamics and angiogenesis, and has the potential to offer invaluable insights in a range of disease models involving abnormal hemodynamics, such as diabetes and tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Singer AJ, Clark RAF (1999) Cutaneous wound healing. New Eng J Med 341:738–746

    Article  PubMed  CAS  Google Scholar 

  2. Kiyama T, Naito M, Shitama H, Shinoda T, Maeyama A (2008) Comparison of skin blood flow between mini- and standard-incision approaches during total hip arthroplasty. J Arthroplast 23:1045–1049

    Article  Google Scholar 

  3. Koskela M, Gaddnas F, Ala-Kokko TI, Laurila JJ, Saarnio J et al (2009) Epidermal wound healing in severe sepsis and septic shock in humans. Crit Care 13:R100

    Article  PubMed  Google Scholar 

  4. Ngo BT, Hayes KD, DiMiao DJ, Srinivasan SK, Huerter CJ et al (2005) Manifestations of cutaneous diabetic microangiopathy. Am J Clin Dermatol 6:225–237

    Article  PubMed  Google Scholar 

  5. Chung JH, Eun HC (2007) Angiogenesis in skin aging and photoaging. J Dermatol 34:593–600

    Article  PubMed  CAS  Google Scholar 

  6. Sorg H, Krueger C, Vollmar B (2007) Intravital insights in skin wound healing using the mouse dorsal skin fold chamber. J Anat 211:810–818

    Article  PubMed  Google Scholar 

  7. Demirdogen B, Elcin AE, Elcin YM (2010) Neovascularization by bFGF releasing hyaluronic acid-gelatin microspheres: in vitro and in vivo studies. Growth Factors 28:426–436

    Article  PubMed  CAS  Google Scholar 

  8. Rendell MS, Johnson ML, Smith D, Finney D, Capp C et al (2002) Skin blood flow response in the rat model of wound healing: expression of vasoactive factors. J Surg Res 107:18–26

    PubMed  CAS  Google Scholar 

  9. Shaterian A, Borboa A, Sawada R, Costantini T, Potenza B et al (2009) Real-time analysis of the kinetics of angiogenesis and vascular permeability in an animal model of wound healing. Burns 35:811–817

    Article  PubMed  Google Scholar 

  10. Rendell MS, Milliken BK, Finnegan MF, Finney DE, Healy JC et al (1998) The microvascular composition of the healing wound compared at skin sites with nutritive versus arteriovenous perfusion. J Surg Res 80:373–379

    Article  PubMed  CAS  Google Scholar 

  11. North KA, Sanders AG (1958) The development of collateral circulation in the mouse’s ear. Circ Res 6:721–727

    PubMed  CAS  Google Scholar 

  12. Rendell MS, Milliken BK, Finnegan MF, Finney DA, Healy JC (1997) The skin blood flow response in wound healing. Microvasc Res 53:222–234

    Article  PubMed  CAS  Google Scholar 

  13. Murari K, Li N, Rege A, Jia X, All A et al (2007) Contrast-enhanced imaging of cerebral vasculature with laser speckle. Appl Opt 46:5340–5346

    Article  PubMed  CAS  Google Scholar 

  14. Dunn AK, Bolay H, Moskowitz MA, Boas DA (2001) Dynamic imaging of cerebral blood flow using laser speckle. J Cereb Blood Flow Metab 21:195–201

    Article  PubMed  CAS  Google Scholar 

  15. Ayata C, Dunn AK, Gursoy OY, Huang Z, Boas DA et al (2004) Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex. J Cereb Blood Flow Metab 24:744–755

    Article  PubMed  Google Scholar 

  16. Nakagami G, Sari Y, Nagase T, Iizaka S, Ohta Y, et al. (2010) Evaluation of the usefulness of skin blood flow measurements by laser speckle flowgraphy in pressure-induced ischemic wounds in rats. Ann Plast Surg 64:351–354

    Google Scholar 

  17. Stewart CJ, Gallant-Behm CL, Forrester K, Tulip J, Hart DA et al (2006) Kinetics of blood flow during healing of excisional full-thickness skin wounds in pigs as monitored by laser speckle perfusion imaging. Skin Res Technol 12:247–253

    Article  PubMed  CAS  Google Scholar 

  18. Davidson JM (1998) Animal models for wound repair. Arch Dermatol Res 290(Suppl):S1–S11

    Article  PubMed  Google Scholar 

  19. Barker JH, Kjolseth D, Kim M, Frank J, Bondar I et al (1994) The hairless mouse ear: an in vivo model for studying wound neovascularization. Wound Repair Regen 2:138–143

    Article  PubMed  CAS  Google Scholar 

  20. Ramirez-San-Juan JC, Ramos-García R, Guizar-Iturbide I, Martínez-Niconoff G, Choi B (2008) Impact of velocity distribution assumption on simplified laser speckle imaging equation. Opt Express 16:3197–3203

    Article  PubMed  Google Scholar 

  21. Bandyopadhyay R, Gittings A, Suh S, Dixon P, Durian D (2005) Speckle-visibility spectroscopy: a tool to study time-varying dynamics. Rev Sci Instrum 76:0931101–0931111

    Article  Google Scholar 

  22. Duncan DD, Kirkpatrick SJ (2008) Can laser speckle flowmetry be made a quantitative tool? J Opt Soc Am A Opt Image Sci Vis 25:2088–2094

    Article  PubMed  CAS  Google Scholar 

  23. Rege A, Murari K, Li N, Thakor NV (2010) Imaging microvascular flow characteristics using laser speckle contrast imaging. Proc 32nd Ann Intl Conf IEEE Engr Med Biol Soc, Buenos Aires, pp 1978–1981. http://www.ncbi.nlm.nih.gov/pubmed/21096787

  24. Barber DC (1992) Registration of low resolution medical images. Phys Med Biol 37:1485–1498

    Article  PubMed  CAS  Google Scholar 

  25. Miao P, Li N, Rege A, Tong S, Thakor NV (2009) Model based reconstruction for simultaneously imaging cerebral blood flow and deoxyhemoglobin distribution. Proc 31st Ann Intl Conf IEEE Engr Med Biol Soc, Minneapolis, pp 3236–3293. http://www.ncbi.nlm.nih.gov/pubmed/19964288

  26. Patasius M, Marozas V, Lukosevicius A, Jegelevicius D (2007) Model based investigation of retinal vessel tortuosity as a function of blood pressure: preliminary results. Proc 29th Ann Intl Conf IEEE Engr Med Biol Soc, Lyon, pp 6459–6462. http://www.ncbi.nlm.nih.gov/pubmed/18003504

  27. Hart WE, Goldbaum M, Côté B, Kube P, Nelson MR (1999) Measurement and classification of retinal vascular tortuosity. Int J Med Inform 53:239–252

    Article  PubMed  CAS  Google Scholar 

  28. Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97:1093–1107

    Article  PubMed  CAS  Google Scholar 

  29. Simon-Assmann P, Orend G, Mammadova-Bach E, Spenle C, Lefebvre O (2011) Role of laminins in physiological and pathological angiogenesis. Int J Dev Biol 55:455–465

    Article  PubMed  CAS  Google Scholar 

  30. Pettersson A, Nagy JA, Brown LF, Sundberg C, Morgan E et al (2000) Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab Invest 80:99–115

    Article  PubMed  CAS  Google Scholar 

  31. Bondar I, Uhl E, Barker JH, Galla TJ, Hammersen F et al (1991) A new model for studying microcirculatory changes during dermal wound healing. Res Exp Med (Berl) 191:379–388

    Article  CAS  Google Scholar 

  32. Fukumura DAI, Jain RK (2008) Imaging angiogenesis and the microenvironment. APMIS 116:695–715

    Article  PubMed  CAS  Google Scholar 

  33. Hu S, Wang LV (2010) Photoacoustic imaging and characterization of the microvasculature. J Biomed Opt 15:011101

    Article  PubMed  Google Scholar 

  34. Vakoc BJ, Lanning RM, Tyrrell JA, Padera TP, Bartlett LA et al (2009) Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15:1219–1223

    Article  PubMed  CAS  Google Scholar 

  35. Cho CH, Sung HK, Kim KT, Cheon HG, Oh GT et al (2006) COMP-angiopoietin-1 promotes wound healing through enhanced angiogenesis, lymphangiogenesis, and blood flow in a diabetic mouse model. Proc Natl Acad Sci USA 103:4946–4951

    Article  PubMed  CAS  Google Scholar 

  36. Ambrozy E, Waczulikova I, Willfort-Ehringer A, Ehringer H, Koppensteiner R et al (2009) Microcirculation in mixed arterial/venous ulcers and the surrounding skin: clinical study using a laser Doppler perfusion imager and capillary microscopy. Wound Repair Regen 17:19–24

    Article  PubMed  Google Scholar 

  37. Dunn AK, Devor A, Bolay H, Andermann ML, Moskowitz MA et al (2003) Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation. Opt Lett 28:28–30

    Article  PubMed  CAS  Google Scholar 

  38. Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835–870

    PubMed  CAS  Google Scholar 

  39. Eming SA, Brachvogel B, Odorisio T, Koch M (2007) Regulation of angiogenesis: wound healing as a model. Prog Histochem Cytochem 42:115–170

    Article  PubMed  CAS  Google Scholar 

  40. Roesken F, Uhl E, Curri SB, Menger MD, Messmer K (2000) Acceleration of wound healing by topical drug delivery via liposomes. Langenbecks Arch Surg 385:42–49

    Article  PubMed  CAS  Google Scholar 

  41. Vollmar B, El-Gibaly AM, Scheuer C, Strik MW, Bruch HP et al (2002) Acceleration of cutaneous wound healing by transient p53 inhibition. Lab Invest 82:1063–1071

    PubMed  CAS  Google Scholar 

  42. Schafer M, Werner S (2008) Cancer as an overhealing wound: an old hypothesis revisited. Natl Rev Mol Cell Biol 9:628–638

    Article  CAS  Google Scholar 

  43. Nagy JA, Chang SH, Shih SC, Dvorak AM, Dvorak HF (2010) Heterogeneity of the tumor vasculature. Semin Thromb Hemost 36:321–331

    Article  PubMed  CAS  Google Scholar 

  44. Escamez MJ, Garcia M, Larcher F, Meana A, Munoz E et al (2004) An in vivo model of wound healing in genetically modified skin-humanized mice. J Invest Dermatol 123:1182–1191

    Article  PubMed  CAS  Google Scholar 

  45. Apikoglu-Rabus S, Izzettin FV, Turan P, Ercan F (2009) Effect of topical insulin on cutaneous wound healing in rats with or without acute diabetes. Clin Exp Dermatol 35:180–185

    Article  PubMed  Google Scholar 

  46. Tian J, Wong KKY, Ho C-M, Lok C-N, Yu W-Y et al (2007) Topical delivery of silver nanoparticles promotes wound healing. Chem Med Chem 2:129–136

    PubMed  CAS  Google Scholar 

  47. Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich HP et al (2009) The role of vascular endothelial growth factor in wound healing. J Surg Res 153:347–358

    Article  PubMed  CAS  Google Scholar 

  48. Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25:2648–2659

    Article  PubMed  CAS  Google Scholar 

  49. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659

    Article  PubMed  CAS  Google Scholar 

  50. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  PubMed  CAS  Google Scholar 

  51. Dewhirst MW, Richardson R, Cardenas-Navia I, Cao Y (2004) The relationship between the tumor physiologic microenvironment and angiogenesis. Hematol Oncol Clin N Am 18:973–990

    Article  Google Scholar 

  52. Bullitt E, Zeng D, Gerig G, Aylward S, Joshi S et al (2005) Vessel tortuosity and brain tumor malignancy: a blinded study1. Acad Radiol 12:1232–1240

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported jointly by National Institute of Aging award number R01AG029681, Department of Health and Human Services award number 1R43CA139983-01, and a JHU Institute of NanoBiotechnology (INBT) Junior Faculty Pilot Award. We gratefully acknowledge Peng Miao for assistance with image registration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind P. Pathak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 2407 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rege, A., Thakor, N.V., Rhie, K. et al. In vivo laser speckle imaging reveals microvascular remodeling and hemodynamic changes during wound healing angiogenesis. Angiogenesis 15, 87–98 (2012). https://doi.org/10.1007/s10456-011-9245-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-011-9245-x

Keywords

Navigation