Skip to main content

Advertisement

Log in

Monitoring antivascular therapy in head and neck cancer xenografts using contrast-enhanced MR and US imaging

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Background

The overall goal of this study was to non-invasively monitor changes in blood flow of squamous cell carcinoma of the head and neck (SCCHN) xenografts using contrast-enhanced magnetic resonance (MR) and ultrasound (US) imaging.

Methods

Experimental studies were performed on mice bearing FaDu tumors and SCCHN xenografts derived from human surgical tissue. MR examinations were performed using gadofosveset trisodium at 4.7T. Change in T1-relaxation rate of tumors (ΔR1) and tumor enhancement parameters (amplitude, area under the curve—AUC) were measured at baseline and 24 h after treatment with a tumor-vascular disrupting agent (tumor-VDA), 5,6-dimethylxanthenone-4-acetic acid (DMXAA; ASA404) and correlated with tumor necrosis and treatment outcome. CE-US was performed using microbubbles (Vevo MicroMarker®) to assess the change in relative tumor blood volume following VDA treatment.

Results

A marked decrease (up to 68% of baseline) in T1-enhancement of FaDu tumors was observed 1 day after VDA therapy indicative of a reduction in blood flow. Early (24 h) vascular response of individual tumors to VDA therapy detected by MRI correlated with tumor necrosis and volume estimates at 10 days post treatment. VDA treatment also resulted in a significant reduction in AUC and amplitude of patient tumor-derived SCCHN xenografts. Consistent with MRI observations, CE-US revealed a significant reduction in tumor blood volume of patient tumor-derived SCCHN xenografts after VDA therapy. Treatment with VDA resulted in a significant tumor growth inhibition of patient tumor derived SCCHN xenografts.

Conclusions

These findings demonstrate that both CE-MRI and CE-US allow monitoring of early changes in vascular function following VDA therapy. The results also demonstrate, for the first time, potent vascular disruptive and antitumor activity of DMXAA against patient tumor-derived head and neck carcinoma xenografts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CE-MRI:

Contrast-enhanced magnetic resonance imaging

CE-US:

Contrast-enhanced ultrasound

SCCHN:

Squamous cell carcinoma xenografts

VDA:

Vascular disrupting agent

DMXAA:

5,6-Dimethylxanthenone-4-acetic acid

References

  1. Davies L, Welch HG (2006) Epidemiology of head and neck cancer in the United States. Otolaryngol Head Neck Surg 135:451–457

    Article  PubMed  Google Scholar 

  2. Gleich LL, Biddinger PW, Pavelic ZP, Gluckman JL (1996) Tumor angiogenesis in T1 oral cavity squamous cell carcinoma: role in predicting tumor aggressiveness. Head Neck 18:343–346

    Article  PubMed  CAS  Google Scholar 

  3. Hasina R, Whipple ME, Martin LE, Kuo WP, Ohno-Machado L, Lingen MW (2008) Angiogenic heterogeneity in head and neck squamous cell carcinoma: biological and therapeutic implications. Lab Invest 88:342–353

    Article  PubMed  CAS  Google Scholar 

  4. Galmarini FC, Galmarini CM, Sarchi MI, Abulafia J, Galmirini D (2000) Heterogeneous distribution of tumor blood supply affects the response to chemotherapy in patients with head and neck cancer. Microcirculation 7:405–410

    PubMed  CAS  Google Scholar 

  5. Kaanders JH, Wijffels KI, Marres HA, Ljungkvist AS, Pop LA, van den Hoogen FJ, de Wilde PC, Bussink J, Raleigh JA, van der Kogel AJ (2002) Pimonidazole binding and tumor vascularity predict for treatment outcome in head and neck cancer. Cancer Res 62:7066–7074

    PubMed  CAS  Google Scholar 

  6. Bozec A, Sudaka A, Fischel JL, Brunstein MC, Etienne-Grimaldi MC, Milano G (2008) Combined effects of bevacizumab with erlotinib and irradiation: a preclinical study on a head and neck cancer orthotopic model. Br J Cancer 99:93–99

    Article  PubMed  CAS  Google Scholar 

  7. Fujita K, Sano D, Kimura M, Yamashita Y, Kawakami M, Ishiguro Y, Nishimura G, Matsuda H, Tsukuda M (2007) Anti-tumor effects of bevacizumab in combination with paclitaxel on head and neck squamous cell carcinoma. Oncol Rep 18:47–51

    PubMed  CAS  Google Scholar 

  8. Bernier J (2008) A multidisciplinary approach to squamous cell carcinomas of the head and neck: an update. Curr Opin Oncol 20:249–255

    Article  PubMed  Google Scholar 

  9. Machiels JP, Henry S, Zanetta S, Kaminsky MC, Michoux N, Rommel D, Schmitz S, Bompas E, Dillies AF, Faivre S, Moxhon A, Duprez T, Guigay J (2010) Phase II study of sunitinib in recurrent or metastatic squamous cell carcinoma of the head and neck: GORTEC 2006-01. J Clin Oncol 28:21–28

    Article  PubMed  CAS  Google Scholar 

  10. Tozer GM, Kanthou C, Baguley BC (2005) Disrupting tumour blood vessels. Nat Rev Cancer 5:423–435

    Article  PubMed  CAS  Google Scholar 

  11. O’Connor JP, Jackson A, Parker GJ, Jayson GC (2007) DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer 96:189–195

    Article  PubMed  Google Scholar 

  12. Hylton N (2006) Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J Clin Oncol 24:3293–3298

    Article  PubMed  CAS  Google Scholar 

  13. Padhani AR, Choyke PL (2006) New techniques in oncologic imaging. Taylor and Francis, New York, pp 257–269

    Google Scholar 

  14. Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188:1622–1635

    Article  PubMed  Google Scholar 

  15. Seshadri M, Merzianu M, Tang H, Rigual NR, Sullivan M, Loree TR, Popat SR, Repasky EA, Hylander BL (2009) Establishment and characterization of patient tumor-derived head and neck squamous cell carcinoma xenografts. Cancer Biol Ther 8:2275–2283

    PubMed  Google Scholar 

  16. Korpanty G, Carbon JG, Grayburn PA, Fleming JB, Brekken RA (2007) Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res 13:323–330

    Article  PubMed  CAS  Google Scholar 

  17. Sullivan JC, Wang B, Boesen EI, D’Angelo G, Pollock JS, Pollock DM (2009) Novel use of ultrasound to examine regional blood flow in the mouse kidney. Am J Physiol Renal Physiol 297:F228–F235

    Article  PubMed  CAS  Google Scholar 

  18. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  19. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286 Review

    Article  PubMed  CAS  Google Scholar 

  20. Yanagi Y, Asaumi J, Unetsubo T, Ashida M, Takenobu T, Hisatomi M, Matsuzaki H, Konouchi H, Katase N, Nagatsuka H (2010) Usefulness of MRI and dynamic contrast-enhanced MRI for differential diagnosis of simple bone cysts from true cysts in the jaw. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 110:364–369

    Article  PubMed  Google Scholar 

  21. Unetsubo T, Konouchi H, Yanagi Y, Murakami J, Fujii M, Matsuzaki H, Hisatomi M, Nagatsuka H, Asaumi J (2009) Dynamic contrast-enhanced magnetic resonance imaging for estimating tumor proliferation and microvessel density of oral squamous cell carcinomas. Oral Oncol 45:621–626

    Article  PubMed  Google Scholar 

  22. Newbold K, Castellano I, Charles-Edwards E, Mears D, Sohaib A, Leach M, Rhys-Evans P, Clarke P, Fisher C, Harrington K, Nutting C (2009) An exploratory study into the role of dynamic contrast-enhanced magnetic resonance imaging or perfusion computed tomography for detection of intratumoral hypoxia in head-and-neck cancer. Int J Radiat Oncol Biol Phys 74:29–37

    Article  PubMed  Google Scholar 

  23. Hayes C, Padhani AR, Leach MO (2002) Assessing changes in tumour vascular function using dynamic contrast-enhanced magnetic resonance imaging. NMR Biomed 15:154–163

    Article  PubMed  Google Scholar 

  24. Kim S, Quon H, Loevner LA, Rosen MA, Dougherty L, Kilger AM, Glickson JD, Poptani H (2007) Transcytolemmal water exchange in pharmacokinetic analysis of dynamic contrast-enhanced MRI data in squamous cell carcinoma of the head and neck. J Magn Reson Imaging 26:1607–1617

    Article  PubMed  Google Scholar 

  25. Van Cann EM, Rijpkema M, Heerschap A, van der Bilt A, Koole R, Stoelinga PJ (2008) Quantitative dynamic contrast-enhanced MRI for the assessment of mandibular invasion by squamous cell carcinoma. Oral Oncol 44:1147–1154

    Article  PubMed  Google Scholar 

  26. Cao Y, Popovtzer A, Li D, Chepeha DB, Moyer JS, Prince ME, Worden F, Teknos T, Bradford C, Mukherji SK, Eisbruch A (2008) Early prediction of outcome in advanced head-and-neck cancer based on tumor blood volume alterations during therapy: a prospective study. Int J Radiat Oncol Biol Phys 72:1287–1290

    Article  PubMed  Google Scholar 

  27. Farace P, Merigo F, Fiorini S, Nicolato E, Tambalo S, Daducci A, Degrassi A, Sbarbati A, Rubello D, Marzola P (2011) DCE-MRI using small-molecular and albumin-binding contrast agents in experimental carcinomas with different stromal content. Eur J Radiol 78(1):52–59

    Google Scholar 

  28. Forastiere AA, Goepfert H, Maor M, Pajak TF, Weber R, Morrison W, Glisson B, Trotti A, Ridge JA, Chao C, Peters G, Lee DJ, Leaf A, Ensley J, Cooper J (2003) Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. N Engl J Med 349:2091–2098

    Article  PubMed  CAS  Google Scholar 

  29. Siemann DW, Rojiani AM (2005) The vascular disrupting agent ZD6126 shows increased antitumor efficacy and enhanced radiation response in large, advanced tumors. Int J Radiat Oncol Biol Phys 62:846–853

    Article  PubMed  CAS  Google Scholar 

  30. Seshadri M, Toth K (2009) Acute vascular disruption by 5,6-dimethylxanthenone-4-acetic acid in an orthotopic model of human head and neck cancer. Transl Oncol 2:121–127

    PubMed  Google Scholar 

  31. Yeung SC, She M, Yang H, Pan J, Sun L, Chaplin D (2007) Combination chemotherapy including combretastatin A4 phosphate and paclitaxel is effective against anaplastic thyroid cancer in a nude mouse xenograft model. J Clin Endocrinol Metab 92:2902–2909

    Article  PubMed  CAS  Google Scholar 

  32. McKeage MJ, Baguley BC (2010) Disrupting established tumor blood vessels: an emerging therapeutic strategy for cancer. Cancer 116:1859–1871 Review

    Article  PubMed  CAS  Google Scholar 

  33. Kelland LR (2005) Targeting established tumor vasculature: a novel approach to cancer treatment. Curr Cancer Ther Rev 1:1–9

    Article  Google Scholar 

  34. McPhail LD, Griffiths JR, Robinson SP (2007) Assessment of tumor response to the vascular disrupting agents 5,6-dimethylxanthenone-4-acetic acid or combretastatin-A4-phosphate by intrinsic susceptibility magnetic resonance imaging. Int J Radiat Oncol Biol Phys 69:1238–1245

    Article  PubMed  CAS  Google Scholar 

  35. Ching L-M, Zwain S, Baguley BC (2004) Relationship between tumour endothelial cell apoptosis and tumour blood flow shutdown following treatment with the antivascular agent DMXAA in mice. Br J Cancer 90:906–910

    Article  PubMed  CAS  Google Scholar 

  36. McKeage MJ, Fong P, Jeffery M, Baguley BC, Kestell P, Ravic M, Jameson MB (2006) 5,6-Dimethylxanthenone-4-acetic acid in the treatment of refractory tumors: a phase I safety study of a vascular disrupting agent. Clin Cancer Res 12:1776–1784

    Article  PubMed  CAS  Google Scholar 

  37. Galbraith SM, Rustin GJ, Lodge MA, Taylor NJ, Stirling JJ, Jameson M, Thompson P, Hough D, Gumbrell L, Padhani AR (2002) Effects of 5,6-dimethylxanthenone-4-acetic acid on human tumor microcirculation assessed by dynamic contrast-enhanced magnetic resonance imaging. J Clin Oncol 20:3826–3840

    Article  PubMed  CAS  Google Scholar 

  38. Galbraith SM, Maxwell RJ, Lodge MA, Tozer GM, Wilson J, Taylor NJ, Stirling JJ, Sena L, Padhani AR, Rustin GJ (2003) Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J Clin Oncol 21:2831–2842

    Article  PubMed  CAS  Google Scholar 

  39. Zweifel M, Padhani AR (2010) Perfusion MRI in the early clinical development of antivascular drugs: decorations or decision making tools? Eur J Nucl Med Mol Imaging 37:S164–S182

    Article  PubMed  Google Scholar 

  40. Bentzen L, Vestergaard-Poulsen P, Nielsen T, Overgaard J, Bjørnerud A, Briley-Saebø K, Horsman MR, Ostergaard L (2005) Intravascular contrast agent-enhanced MRI measuring contrast clearance and tumor blood volume and the effects of vascular modifiers in an experimental tumor. Int J Radiat Oncol Biol Phys 61:1208–1215

    Article  PubMed  CAS  Google Scholar 

  41. Seshadri M, Bellnier DA, Cheney RT (2008) Assessment of the early effects of 5,6-dimethylxanthenone-4-acetic acid using macromolecular contrast media-enhanced magnetic resonance imaging: ectopic versus orthotopic tumors. Int J Radiat Oncol Biol Phys 72:1198–1207

    Article  PubMed  CAS  Google Scholar 

  42. Goyen M, Shamsi K, Schoenberg SO (2006) Vasovist-enhanced MR angiography. Eur Radiol 16:B9–B14

    Article  PubMed  Google Scholar 

  43. Turetschek K, Floyd E, Helbich T, Roberts TP, Shames DM, Wendland MF, Carter WO, Brasch RC (2001) MRI assessment of microvascular characteristics in experimental breast tumors using a new blood pool contrast agent (MS-325) with correlations to histopathology. J Magn Reson Imaging 14:237–242

    Article  PubMed  CAS  Google Scholar 

  44. O’Connor JP, Carano RA, Clamp AR, Ross J, Ho CC, Jackson A, Parker GJ, Rose CJ, Peale FV, Friesenhahn M, Mitchell CL, Watson Y, Roberts C, Hope L, Cheung S, Reslan HB, Go MA, Pacheco GJ, Wu X, Cao TC, Ross S, Buonaccorsi GA, Davies K, Hasan J, Thornton P, del Puerto O, Ferrara N, van Bruggen N, Jayson GC (2009) Quantifying antivascular effects of monoclonal antibodies to vascular endothelial growth factor: insights from imaging. Clin Cancer Res 15:6674–6682

    Article  PubMed  Google Scholar 

  45. Goertz DE, Yu JL, Kerbel RS, Burns PN, Foster FS (2002) High-frequency Doppler ultrasound monitors the effects of antivascular therapy on tumor blood flow. Cancer Res 62:6371–6375

    PubMed  CAS  Google Scholar 

  46. Masunaga S, Nagasawa H, Nagata K, Suzuki M, Uto Y, Hori H, Kinashi Y, Ono K (2007) Dependency of the effect of a vascular disrupting agent on sensitivity to tirapazamine and gamma-ray irradiation upon the timing of its administration and tumor size, with reference to the effect on intratumor quiescent cells. J Cancer Res Clin Oncol 133:47–55

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Steve Turowski and Ms. Jaimee Lockwood for their assistance in performing the imaging studies. This work was supported by grants from the National Cancer Institute R21CA133688 (M.S.) and utilized core resources supported by RPCI’s Cancer Center Support Grant from the NCI P30CA16056 (Trump, DL).

Conflicts of interest

Seshadri M: None; Sacadura NT is a full-time employee of VisualSonics Inc.; Coulthard T was a full-time employee of VisualSonics Inc. during the period the study. Currently an employee at Aspect Imaging, Toronto, ON, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukund Seshadri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10456_2011_9233_MOESM1_ESM.ppt

S1. Photomicrographs of H&E stained FaDu tumor sections on day 10 post VDA treatment. S2. Change in R1 (ΔR1) of FaDu tumors and blood (vessel) following administration of gadopentetate and gadofosveset. (PPT 18113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seshadri, M., Sacadura, N.T. & Coulthard, T. Monitoring antivascular therapy in head and neck cancer xenografts using contrast-enhanced MR and US imaging. Angiogenesis 14, 491–501 (2011). https://doi.org/10.1007/s10456-011-9233-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-011-9233-1

Keywords

Navigation