Skip to main content

Advertisement

Log in

Heme oxygenase 1 (HO-1) challenges the angiogenic switch in prostate cancer

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Prostate cancer (PCa) is the second leading cause of cancer-associated death in men. Once a tumor is established it may attain further characteristics via mutations or hypoxia, which stimulate new blood vessels. Angiogenesis is a hallmark in the pathogenesis of cancer and inflammatory diseases that may predispose to cancer. Heme oxygenase-1 (HO-1) counteracts oxidative and inflammatory damage and was previously reported to play a key role in prostate carcinogenesis. To gain insight into the anti-tumoral properties of HO-1, we investigated its capability to modulate PCa associated-angiogenesis. In the present study, we identified in PC3 cells a set of inflammatory and pro-angiogenic genes down-regulated in response to HO-1 overexpression, in particular VEGFA, VEGFC, HIF1α and α5β1 integrin. Our results indicated that HO-1 counteracts oxidative imbalance reducing ROS levels. An in vivo angiogenic assay showed that intradermal inoculation of PC3 cells stable transfected with HO-1 (PC3HO-1) generated tumours less vascularised than controls, with decreased microvessel density and reduced CD34 and MMP9 positive staining. Interestingly, longer term grown PC3HO-1 xenografts displayed reduced neovascularization with the subsequent down-regulation of VEGFR2 expression. Additionally, HO-1 repressed nuclear factor κB (NF-κB)-mediated transcription from an NF-κB responsive luciferase reporter construct, which strongly suggests that HO-1 may regulate angiogenesis through this pathway. Taken together, these data supports a key role of HO-1 as a modulator of the angiogenic switch in prostate carcinogenesis ascertaining it as a logical target for intervention therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ushio-Fukai M, Nakamura Y (2008) Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett 266(1):37–52

    Article  PubMed  CAS  Google Scholar 

  2. Hiratsuka S (2011) Vasculogenensis, angiogenesis and special features of tumor blood vessels. Front Biosci 16:1413–1427

    Article  PubMed  CAS  Google Scholar 

  3. Mohamedali KA, Li ZG, Starbuck MW, Wan X, Yang J, Kim S, Zhang W, Rosenblum MG, Navone NM (2011) Inhibition of prostate cancer osteoblastic progression with VEGF121/rGel, a single agent targeting osteoblasts, osteoclasts, and tumor neovasculature. Clin Cancer Res 17(8):2328–2338

    Article  PubMed  CAS  Google Scholar 

  4. Bussolati B, Ahmed A, Pemberton H, Landis RC, Di Carlo F, Haskard DO, Mason JC (2004) Bifunctional role for VEGF-induced heme oxygenase-1 in vivo: induction of angiogenesis and inhibition of leukocytic infiltration. Blood 103(3):761–766

    Article  PubMed  CAS  Google Scholar 

  5. Jozkowicz A, Was H, Dulak J (2007) Heme oxygenase-1 in tumors: is it a false friend? Antioxid Redox Signal 9(12):2099–2117

    Article  PubMed  CAS  Google Scholar 

  6. Wegiel B, Chin BY, Otterbein LE (2008) Inhale to survive, cycle or die? Carbon monoxide and cellular proliferation. Cell Cycle 7(10):1379–1384

    Article  PubMed  CAS  Google Scholar 

  7. Dulak J, Deshane J, Jozkowicz A, Agarwal A (2008) Heme oxygenase-1 and carbon monoxide in vascular pathobiology: focus on angiogenesis. Circulation 117(2):231–241

    Article  PubMed  CAS  Google Scholar 

  8. De Marzo AM, Platz EA, Sutcliffe S, Xu J, Gronberg H, Drake CG, Nakai Y, Isaacs WB, Nelson WG (2007) Inflammation in prostate carcinogenesis. Nat Rev Cancer 7(4):256–269

    Article  PubMed  Google Scholar 

  9. Finger EC, Giaccia AJ (2010) Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metastasis Rev 29(2):285–293

    Article  PubMed  CAS  Google Scholar 

  10. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6(4):273–286

    Article  PubMed  CAS  Google Scholar 

  11. Huss WJ, Hanrahan CF, Barrios RJ, Simons JW, Greenberg NM (2001) Angiogenesis and prostate cancer: identification of a molecular progression switch. Cancer Res 61(6):2736–2743

    PubMed  CAS  Google Scholar 

  12. Jodele S, Blavier L, Yoon JM, DeClerck YA (2006) Modifying the soil to affect the seed: role of stromal-derived matrix metalloproteinases in cancer progression. Cancer Metastasis Rev 25(1):35–43

    Article  PubMed  CAS  Google Scholar 

  13. Sacca P, Meiss R, Casas G, Mazza O, Calvo JC, Navone N, Vazquez E (2007) Nuclear translocation of haeme oxygenase-1 is associated to prostate cancer. Br J Cancer 97(12):1683–1689

    Article  PubMed  CAS  Google Scholar 

  14. Li Y, Su J, Dingzhang X, Zhang J, Yoshimoto M, Liu S, Bijian K, Gupta A, Squire JA, Alaoui Jamali MA, Bismar TA (2011) PTEN deletion and heme oxygenase-1 overexpression cooperate in prostate cancer progression and are associated with adverse clinical outcome. J Pathol 224(1):90–100

    Article  PubMed  CAS  Google Scholar 

  15. Gueron G, De Siervi A, Ferrando M, Salierno M, De Luca P, Elguero B, Meiss R, Navone N, Vazquez ES (2009) Critical role of endogenous heme oxygenase 1 as a tuner of the invasive potential of prostate cancer cells. Mol Cancer Res 7(11):1745–1755

    Article  PubMed  CAS  Google Scholar 

  16. Mira E, Lacalle RA, Buesa JM, de Buitrago GG, Jimenez-Baranda S, Gomez-Mouton C, Martinez AC, Manes S (2004) Secreted MMP9 promotes angiogenesis more efficiently than constitutive active MMP9 bound to the tumor cell surface. J Cell Sci 117(Pt 9):1847–1857

    Article  PubMed  CAS  Google Scholar 

  17. Kong D, Li Y, Wang Z, Banerjee S, Sarkar FH (2007) Inhibition of angiogenesis and invasion by 3,3′-diindolylmethane is mediated by the nuclear factor-κB downstream target genes MMP-9 and uPA that regulated bioavailability of vascular endothelial growth factor in prostate cancer. Cancer Res 67(7):3310–3319

    Article  PubMed  CAS  Google Scholar 

  18. Akalu A, Cretu A, Brooks PC (2005) Targeting integrins for the control of tumour angiogenesis. Expert Opin Investig Drugs 14(12):1475–1486

    Article  PubMed  CAS  Google Scholar 

  19. Eliceiri BP (2001) Integrin and growth factor receptor crosstalk. Circ Res 89(12):1104–1110

    Article  PubMed  CAS  Google Scholar 

  20. Rankin EB, Giaccia AJ (2008) The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ 15(4):678–685

    Article  PubMed  CAS  Google Scholar 

  21. Tuomela J, Valta M, Seppanen J, Tarkkonen K, Vaananen HK, Harkonen P (2009) Overexpression of vascular endothelial growth factor C increases growth and alters the metastatic pattern of orthotopic PC-3 prostate tumors. BMC Cancer 9:362

    Article  PubMed  Google Scholar 

  22. Joseph IB, Nelson JB, Denmeade SR, Isaacs JT (1997) Androgens regulate vascular endothelial growth factor content in normal and malignant prostatic tissue. Clin Cancer Res 3(12 Pt 1):2507–2511

    PubMed  CAS  Google Scholar 

  23. Davel LE, Rimmaudo L, Espanol A, de la Torre E, Jasnis MA, Ribeiro ML, Gotoh T, de Lustig ES, Sales ME (2004) Different mechanisms lead to the angiogenic process induced by three adenocarcinoma cell lines. Angiogenesis 7(1):45–51

    Article  PubMed  CAS  Google Scholar 

  24. Liu SF, Malik AB (2006) NF-κB activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol 290(4):L622–L645

    Article  PubMed  CAS  Google Scholar 

  25. Shukla S, Maclennan GT, Marengo SR, Resnick MI, Gupta S (2005) Constitutive activation of P I3 K-Akt and NF-κB during prostate cancer progression in autochthonous transgenic mouse model. Prostate 64(3):224–239

    Article  PubMed  CAS  Google Scholar 

  26. Suh J, Payvandi F, Edelstein LC, Amenta PS, Zong WX, Gelinas C, Rabson AB (2002) Mechanisms of constitutive NF-κB activation in human prostate cancer cells. Prostate 52(3):183–200

    Article  PubMed  CAS  Google Scholar 

  27. Holmes K, Roberts OL, Thomas AM, Cross MJ (2007) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19(10):2003–2012

    Article  PubMed  CAS  Google Scholar 

  28. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    Article  PubMed  Google Scholar 

  29. Ramsay AK, Leung HY (2009) Signalling pathways in prostate carcinogenesis: potentials for molecular-targeted therapy. Clin Sci (Lond) 117(6):209–228

    Article  CAS  Google Scholar 

  30. Berz D, Wanebo H (2011) Targeting the growth factors and angiogenesis pathways: small molecules in solid tumors. J Surg Oncol 103(6):574–586

    Article  PubMed  CAS  Google Scholar 

  31. Tertil M, Jozkowicz A, Dulak J (2010) Oxidative stress in tumor angiogenesis-therapeutic targets. Curr Pharm Des 16(35):3877–3894

    Article  PubMed  CAS  Google Scholar 

  32. Lin Q, Weis S, Yang G, Weng YH, Helston R, Rish K, Smith A, Bordner J, Polte T, Gaunitz F, Dennery PA (2007) Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress. J Biol Chem 282(28):20621–20633

    Article  PubMed  CAS  Google Scholar 

  33. Slebos DJ, Ryter SW, van der Toorn M, Liu F, Guo F, Baty CJ, Karlsson JM, Watkins SC, Kim HP, Wang X, Lee JS, Postma DS, Kauffman HF, Choi AM (2007) Mitochondrial localization and function of heme oxygenase-1 in cigarette smoke-induced cell death. Am J Respir Cell Mol Biol 36(4):409–417

    Article  PubMed  CAS  Google Scholar 

  34. Converso DP, Taille C, Carreras MC, Jaitovich A, Poderoso JJ, Boczkowski J (2006) HO-1 is located in liver mitochondria and modulates mitochondrial heme content and metabolism. FASEB J 20(8):1236–1238

    Article  PubMed  CAS  Google Scholar 

  35. Lin QS, Weis S, Yang G, Zhuang T, Abate A, Dennery PA (2008) Catalytic inactive heme oxygenase-1 protein regulates its own expression in oxidative stress. Free Radic Biol Med 44(5):847–855

    Article  PubMed  CAS  Google Scholar 

  36. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  PubMed  CAS  Google Scholar 

  37. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257

    Article  PubMed  CAS  Google Scholar 

  38. Zayed MA, Yuan W, Chalothorn D, Faber JE, Parise LV (2010) Tumor growth and angiogenesis is impaired in CIB1 knockout mice. J Angiogenes Res 2:17

    Article  PubMed  Google Scholar 

  39. Sunamura M, Duda DG, Ghattas MH, Lozonschi L, Motoi F, Yamauchi J, Matsuno S, Shibahara S, Abraham NG (2003) Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer. Angiogenesis 6(1):15–24

    Article  PubMed  CAS  Google Scholar 

  40. Miyake M, Fujimoto K, Anai S, Ohnishi S, Kuwada M, Nakai Y, Inoue T, Matsumura Y, Tomioka A, Ikeda T, Tanaka N, Hirao Y (2011) Heme oxygenase-1 promotes angiogenesis in urothelial carcinoma of the urinary bladder. Oncol Rep 25(3):653–660

    Article  PubMed  CAS  Google Scholar 

  41. Zhu X, Fan WG, Li DP, Lin MC, Kung H (2010) Heme oxygenase-1 system and gastrointestinal tumors. World J Gastroenterol 16(21):2633–2637

    Article  PubMed  CAS  Google Scholar 

  42. Bussolati B, Mason JC (2006) Dual role of VEGF-induced heme-oxygenase-1 in angiogenesis. Antioxid Redox Signal 8(7–8):1153–1163

    Article  PubMed  CAS  Google Scholar 

  43. McCawley LJ, Matrisian LM (2001) Tumor progression: defining the soil round the tumor seed. Curr Biol 11(1):R25–R27

    Article  PubMed  CAS  Google Scholar 

  44. Chen J, De S, Brainard J, Byzova TV (2004) Metastatic properties of prostate cancer cells are controlled by VEGF. Cell Commun Adhes 11(1):1–11

    Article  PubMed  Google Scholar 

  45. Latil A, Bieche I, Pesche S, Valeri A, Fournier G, Cussenot O, Lidereau R (2000) VEGF overexpression in clinically localized prostate tumors and neuropilin-1 overexpression in metastatic forms. Int J Cancer 89(2):167–171

    Article  PubMed  CAS  Google Scholar 

  46. Bonecchi R, Locati M, Mantovani A (2011) Chemokines and cancer: a fatal attraction. Cancer Cell 19(4):434–435

    Article  PubMed  CAS  Google Scholar 

  47. Huang S, Robinson JB, Deguzman A, Bucana CD, Fidler IJ (2000) Blockade of nuclear factor-κB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res 60(19):5334–5339

    PubMed  CAS  Google Scholar 

  48. Rettig MB, Heber D, An J, Seeram NP, Rao JY, Liu H, Klatte T, Belldegrun A, Moro A, Henning SM, Mo D, Aronson WJ, Pantuck A (2008) Pomegranate extract inhibits androgen-independent prostate cancer growth through a nuclear factor-κB-dependent mechanism. Mol Cancer Ther 7(9):2662–2671

    Article  PubMed  CAS  Google Scholar 

  49. Shukla S, MacLennan GT, Fu P, Patel J, Marengo SR, Resnick MI, Gupta S (2004) Nuclear factor-κB/p65 (Rel A) is constitutively activated in human prostate adenocarcinoma and correlates with disease progression. Neoplasia 6(4):390–400

    Article  PubMed  CAS  Google Scholar 

  50. Gasparian AV, Yao YJ, Kowalczyk D, Lyakh LA, Karseladze A, Slaga TJ, Budunova IV (2002) The role of IKK in constitutive activation of NF-κB transcription factor in prostate carcinoma cells. J Cell Sci 115(Pt 1):141–151

    PubMed  CAS  Google Scholar 

  51. Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ (2001) Blockade of NF-κB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 20(31):4188–4197

    Article  PubMed  CAS  Google Scholar 

  52. Werbajh S, Nojek I, Lanz R, Costas MA (2000) RAC-3 is a NF-κB coactivator. FEBS Lett 485(2–3):195–199

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the University of Buenos Aires, Argentina, UBACyT (2011- 00179), AGENCIA (PICT RAICES 2006-00367 and 2010-0431). We thank Prof. Gabriel Rabinovich (M. Phil, Ph.D.), Prof. Omar Coso and Dr. Monica Costas for kindly providing us with some reagents used in this paper. We are also very grateful to Pablo Vallecorsa (Instituto de Estudios Oncológicos, Academia Nacional de Medicina) for his technical support in the IHQ analysis.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Vazquez.

Additional information

M. Ferrando and G. Gueron contributed equally to this work and are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrando, M., Gueron, G., Elguero, B. et al. Heme oxygenase 1 (HO-1) challenges the angiogenic switch in prostate cancer. Angiogenesis 14, 467–479 (2011). https://doi.org/10.1007/s10456-011-9230-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-011-9230-4

Keywords

Navigation