Skip to main content

Advertisement

Log in

VEGF masks BNIP3-mediated apoptosis of hypoxic endothelial cells

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Hypoxia results in the apoptotic death of myocytes, neurons, and epithelial cells, through the actions of Bcl-2 and Nineteen kilodalton Interacting Protein-3 (BNIP3). On the contrary, endothelial cells are especially adept at surviving conditions of oxygen deprivation via up-regulation of vascular endothelial growth factor (VEGF) the most potent endothelial survival factor. Both VEGF and BNIP3 expression are transcriptionally regulated by hypoxia inducible factor and may antagonize each other’s affects in endothelial cells (ECs). Since factors that promote and inhibit apoptosis may be expressed at the same time in endothelial cells under hypoxic conditions, we decided to investigate whether VEGF and BNIP3 have opposing actions in endothelial cells. Human microvascular endothelial cells were exposed to hypoxic conditions in a Billups-Rothenburg chamber. Under hypoxic conditions BNIP3 expression by endothelial cells increased as measured by real-time PCR and immunoblot. After 48 h of hypoxia, EC apoptosis was assessed by flow cytometry and was lower than in corresponding normoxia serum starved controls. The increase in EC survival under hypoxic conditions corresponded with an increase in the expression of VEGF. Under normoxic conditions adenoviral BNIP3 over-expression promoted apoptosis of ECs; however, recombinant VEGF (100 pg/ml) antagonized the BNIP3 apoptosis promoting affects. SiRNA knockdown of VEGF expression by hypoxic ECs resulted in increased apoptosis with a concomitant increase in BNIP3 expression. SiRNA knockdown of BNIP3 expression by hypoxic ECs reduced the increase in EC apoptosis as a result of VEGF knockdown. We conclude that under hypoxic conditions VEGF counteracts and masks the apoptosis promoting affects of BNIP3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allen J, Winterford C, Axelsen RA, Gobe GC (1992) Effects of hypoxia on morphological and biochemical characteristics of renal epithelial cell and tubule cultures. Ren Fail 14:453–460

    Article  PubMed  CAS  Google Scholar 

  2. Rosenbaum DM, Michaelson M, Batter DK, Doshi P, Kessler JA (1994) Evidence for hypoxia-induced, programmed cell death of cultured neurons. Ann Neurol 36:864–870

    Article  PubMed  CAS  Google Scholar 

  3. Regula KM, Ens K, Kirshenbaum LA (2002) Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes. Circ Res 91:226–231

    Article  PubMed  CAS  Google Scholar 

  4. Regula KM, Ens K, Kirshenbaum LA (2003) Mitochondria-assisted cell suicide: a license to kill. J Mol Cell Cardiol 35:559–567

    Article  PubMed  CAS  Google Scholar 

  5. Kothari S, Cizeau J, McMillan-Ward E, Israels SJ, Bailes M, Ens K et al (2003) BNIP3 plays a role in hypoxic cell death in human epithelial cells that is inhibited by growth factors EGF and IGF. Oncogene 22:4734–4744

    Article  PubMed  CAS  Google Scholar 

  6. Zhang Z, Yang X, Zhang S, Ma X, Kong J (2007) BNIP3 upregulation and endoG translocation in delayed neuronal death in stroke and in hypoxia. Stroke 38:1606–1613

    Article  PubMed  CAS  Google Scholar 

  7. Boyd JM, Malstrom S, Subramanian T, Venkatesh LK, Schaeper U, Elangovan B et al (1994) Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell 79:341–351

    Article  PubMed  CAS  Google Scholar 

  8. Chen G, Ray R, Dubik D, Shi L, Cizeau J, Bleackley RC et al (1997) The E1B 19 K/Bcl-2-binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis. J Exp Med 186:1975–1983

    Article  PubMed  CAS  Google Scholar 

  9. Bruick RK (2000) Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci USA 97:9082–9087

    Article  PubMed  CAS  Google Scholar 

  10. Guo K, Searfoss G, Krolikowski D, Pagnoni M, Franks C, Clark K, Yu KT, Jayea M, Ivashchenko Y (2001) Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ 8:367–376

    Article  PubMed  CAS  Google Scholar 

  11. Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL (2001) HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 61:6669–6673

    PubMed  CAS  Google Scholar 

  12. Kim J-Y, Cho J-J, Ha J, Park J-H (2002) The carboxy terminal C-tail of BNip3 is crucial in induction of mitochondrial permeability transition in isolated mitochondria. Arch Biochem Biophys 398:147–152

    Article  PubMed  CAS  Google Scholar 

  13. Nomura M, Yamagishi S-I, Harada S-I, Hayashi Y, Yamashima T, Yamashita J et al (1995) Possible participation of autocrine and paracrine vascular endothelial growth factors in hypoxia-induced proliferation of endothelial cells and pericytes. J Biol Chem 270:28316–28324

    Article  PubMed  CAS  Google Scholar 

  14. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845

    Article  PubMed  CAS  Google Scholar 

  15. Liu Y, Cox SR, Morita T, Kourembanas S (1995) Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells: identification of a 5’ enhancer. Circ Res 77:638–643

    PubMed  CAS  Google Scholar 

  16. Jurasz P, Santos-Martinez MJ, Radomska A, Radomski MW (2006) Generation of platelet angiostatin mediated by urokinase plasminogen activator: effects on angiogenesis. J Thromb Haemost 4:1095–1106

    Article  PubMed  CAS  Google Scholar 

  17. Vande Velde C, Cizeau J, Dubik D, Alimonti J, Brown T, Israels S et al (2000) BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol 20:5454–5468

    Article  Google Scholar 

  18. Jurasz P, Ng D, Granton JT, Courtman DW, Stewart DJ (2010) Elevated platelet angiostatin and circulating endothelial microfragments in idiopathic pulmonary arterial hypertension: a preliminary study. Thromb Res 125:53–60

    Article  PubMed  CAS  Google Scholar 

  19. Jurasz P, Alonso D, Castro-Blanco S, Murad F, Radomski MW (2003) Generation and role of angiostatin in human platelets. Blood 102:3217–3223

    Article  PubMed  CAS  Google Scholar 

  20. Abaci HE, Truitt R, Luong E, Drazer G, Gerecht S (2010) Adaptation to oxygen deprivation in cultures of human pluripotent stem cells, endothelial progenitor cells, and umbilical vein endothelial cells. Am J Physiol Cell Physiol 298:C1527–C1537

    Article  PubMed  CAS  Google Scholar 

  21. Abid MR, Guo S, Minami T, Spokes KC, Ueki K, Skurk C et al (2004) Vascular endothelial growth factor activates PI3 K/Akt/forkhead signaling in endothelial cells. Arterioscler Thromb Vasc Biol 24:294–300

    Article  PubMed  CAS  Google Scholar 

  22. Bakker WJ, Harris IS, Mak TW (2007) FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2. Mol Cell 28:941–953

    Article  PubMed  CAS  Google Scholar 

  23. Jurasz P, Courtman D, Babaie S, Stewart DJ (2010) Role of apoptosis in pulmonary hypertension: from experimental models to clinical trials. Pharmacol Ther 126:1–8

    Article  PubMed  CAS  Google Scholar 

  24. Taraseviciene-Stewart L, Kasahara Y, Alger L, Hirth P, Mc Mahon G, Waltenberger J et al (2001) Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J 15:427–438

    Article  PubMed  CAS  Google Scholar 

  25. Campbell AIM, Zhao Y, Sandhu R, Stewart DJ (2001) Cell-based gene transfer of vascular endothelial growth factor attenuates monocrotaline-induced pulmonary hypertension. Circulation 104:2242–2248

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

P. J. was supported by a fellowship from the Heart and Stroke Foundation of Canada. This work was supported by grants from the Canadian Institutes of Health Research [MOP-42402 to L.A.K., MOP-57726 to D.J.S.]; and the Heart and Stroke Foundation of Alberta, Nunavut, & NWT [grant-in aid to P. J.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Jurasz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurasz, P., Yurkova, N., Kirshenbaum, L. et al. VEGF masks BNIP3-mediated apoptosis of hypoxic endothelial cells. Angiogenesis 14, 199–207 (2011). https://doi.org/10.1007/s10456-011-9204-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-011-9204-6

Keywords

Navigation