Skip to main content
Log in

Caveolin-1 polarization in transmigrating endothelial cells requires binding to intermediate filaments

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Caveolin-1 influences cell migration through multiple signaling pathways. In a previous report, we have shown that caveolin-1 is polarized in three-dimensional migrating endothelial cells (EC), and that caveolin-1 accumulation at the front of transmigrating cells requires the phosphorylatable Tyr14 residue of caveolin-1. Immuno-electron microscopy further indicated that caveolin-1 was distributed along cytoskeletal structures in the anterior of transmigrating EC [Parat MO, Anand-Apte B, Fox PL (Mol Biol Cell 14:3156–3168, 2003)]. In the present study, we investigate whether caveolin-1 interacts with intermediate filaments (IF) and whether this interaction is required for caveolin-1 polarization in transmigrating cells. The distribution of vimentin is polarized in cells traversing a filter pore and overlaps with the distribution of caveolin-1, which accumulates in the cell front. In vivo sprouting EC also exhibit an anterior polarization of these two proteins. Furthermore, caveolin-1 co-purifies with intermediate filaments, suggesting an interaction between caveolin-1 and IF. Vimentin-deficient SW13 cells exhibit a dramatically altered polarization of caveolin-1-GFP, which no longer accumulates in the protruding cell extension. In addition, the Tyr14 residue of caveolin-1 is required for co-purification of the protein with IF. Taken together, our results show that caveolin-1 Tyr14 is necessary for binding to intermediate filaments, which in turn is required for anterior polarization of caveolin-1 in transmigrating cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    Article  PubMed  CAS  Google Scholar 

  2. Stahlhut M, van Deurs B (2000) Identification of filamin as a novel ligand for caveolin-1: evidence for the organization of caveolin-1-associated membrane domains by the actin cytoskeleton. Mol Biol Cell 11:325–337

    PubMed  CAS  Google Scholar 

  3. Annabi B, Lachambre M, Bousquet-Gagnon N, Page M, Gingras D, Beliveau R (2001) Localization of membrane-type 1 matrix metalloproteinase in caveolae membrane domains. Biochem J 353:547–553

    Article  PubMed  CAS  Google Scholar 

  4. Puyraimond A, Fridman R, Lemesle M, Arbeille B, Menashi S (2001) MMP-2 colocalizes with caveolae on the surface of endothelial cells. Exp Cell Res 262:28–36

    Article  PubMed  CAS  Google Scholar 

  5. Cavallo-Medved D, Mai J, Dosescu J, Sameni M, Sloane BF (2005) Caveolin-1 mediates the expression and localization of cathepsin B, pro-urokinase plasminogen activator and their cell-surface receptors in human colorectal carcinoma cells. J Cell Sci 118:1493–1503

    Article  PubMed  CAS  Google Scholar 

  6. Gonzalez E, Nagiel A, Lin AJ, Golan DE, Michel T (2004) Small interfering RNA-mediated down-regulation of caveolin-1 differentially modulates signaling pathways in endothelial cells. J Biol Chem 279:40659–40669

    Article  PubMed  CAS  Google Scholar 

  7. Michaely PA, Mineo C, Ying YS, Anderson RG (1999) Polarized distribution of endogenous Rac1 and RhoA at the cell surface. J Biol Chem 274:21430–21436

    Article  PubMed  CAS  Google Scholar 

  8. Isshiki M, Ando J, Yamamoto K, Fujita T, Ying Y, Anderson RG (2002) Sites of Ca2+ wave initiation move with caveolae to the trailing edge of migrating cells. J Cell Sci 115:475–484

    PubMed  CAS  Google Scholar 

  9. Labrecque L, Royal I, Surprenant DS, Patterson C, Gingras D, Beliveau R (2003) Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol Biol Cell 14:334–347

    Article  PubMed  CAS  Google Scholar 

  10. Sbaa E, Frerart F, Feron O (2005) The double regulation of endothelial nitric oxide synthase by caveolae and caveolin: a paradox solved through the study of angiogenesis. Trends Cardiovasc Med 15:157–162

    Article  PubMed  CAS  Google Scholar 

  11. Brouet A, DeWever J, Martinive P, Havaux X, Bouzin C, Sonveaux P, Feron O (2004) Antitumor effects of in vivo caveolin gene delivery are associated with the inhibition of the proangiogenic and vasodilatory effects of nitric oxide. FASEB J 19(6):602–604

    PubMed  Google Scholar 

  12. Liu J, Wang XB, Park DS, Lisanti MP (2002) Caveolin-1 expression enhances endothelial capillary tubule formation. J Biol Chem 227:10661–10668

    Article  Google Scholar 

  13. Regina A, Jodoin J, Khoueir P, Rolland Y, Berthelet F, Moumdjian R, Fenart L, Cecchelli R, Demeule M, Beliveau R (2004) Down-regulation of caveolin-1 in glioma vasculature: modulation by radiotherapy. J Neurosci Res 75:291–299

    Article  PubMed  CAS  Google Scholar 

  14. Beardsley A, Fang K, Mertz H, Castranova V, Friend S, Liu J (2004) Loss of caveolin-1 polarity impedes endothelial cell polarization and directional movement. J Biol Chem 280(5):3541–3547

    Article  PubMed  Google Scholar 

  15. Sonveaux P, Martinive P, DeWever J, Batova Z, Daneau G, Pelat M, Ghisdal P, Gregoire V, Dessy C, Balligand JL, Feron O (2004) Caveolin-1 expression is critical for VEGF-induced ischemic hindlimb collateralization and nitric oxide-mediated angiogenesis. Circ Res 95:154–161

    Article  PubMed  CAS  Google Scholar 

  16. Parat MO, Anand-Apte B, Fox PL (2003) Differential caveolin-1 polarization in endothelial cells during migration in two and three dimensions. Mol Biol Cell 14:3156–3168

    Article  PubMed  CAS  Google Scholar 

  17. Santilman V, Baran J, Anand-Apte B, Fox PL, Parat MO (2006) Caveolin-1 polarization in migrating endothelial cells is directed by substrate topology not chemoattractant gradient. Cell Motil Cytoskeleton 63:673–680

    Article  PubMed  CAS  Google Scholar 

  18. Evans RM (1998) Changes in cytoskeletal protein composition indicative of an epithelial-mesenchymal transition in human micrometastatic and primary breast carcinoma cells. Bioessays 20:79–86

    Article  PubMed  CAS  Google Scholar 

  19. Willipinski-Stapelfeldt B, Riethdorf S, Assmann V, Woelfle U, Rau T, Sauter G, Heukeshoven J, Pantel K (2005) Changes in cytoskeletal protein composition indicative of an epithelial-mesenchymal transition in human micrometastatic and primary breast carcinoma cells. Clin Cancer Res 11:8006–8014

    Article  PubMed  CAS  Google Scholar 

  20. Gilles C, Polette M, Zahm JM, Tournier JM, Volders L, Foidart JM, Birembaut P (1999) Vimentin contributes to human mammary epithelial cell migration. J Cell Sci 112(Pt 24):4615–4625

    PubMed  CAS  Google Scholar 

  21. Eckes B, Dogic D, Colucci-Guyon E, Wang N, Maniotis A, Ingber D, Merckling A, Langa F, Aumailley M, Delouvee A, Koteliansky V, Babinet C, Krieg T (1998) Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J Cell Sci 111:1897–1907

    PubMed  CAS  Google Scholar 

  22. Eckes B, Colucci-Guyon E, Smola H, Nodder S, Babinet C, Krieg T, Martin P (2000) Impaired wound healing in embryonic and adult mice lacking vimentin. J Cell Sci 113:2455–2462

    PubMed  CAS  Google Scholar 

  23. Obermeyer N, Janson N, Bergmann J, Buck F, Ito WD (2003) Proteome analysis of migrating versus nonmigrating rat heart endothelial cells reveals distinct expression patterns. Endothelium 10:167–178

    Article  PubMed  CAS  Google Scholar 

  24. Fox PL, DiCorleto PE (1984) Regulation of production of a platelet-derived growth factor-like protein by cultured bovine aortic endothelial cells. J Cell Physiol 121:298–308

    Article  PubMed  CAS  Google Scholar 

  25. Sarria AJ, Lieber JG, Nordeen SK, Evans RM (1994) The presence or absence of a vimentin-type intermediate filament network affects the shape of the nucleus in human SW-13 cells. J Cell Sci 107(Pt 6):1593–1607

    PubMed  CAS  Google Scholar 

  26. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177

    Article  PubMed  CAS  Google Scholar 

  27. Aynardi MW, Steinert PM, Goldman RD (1984) Human epithelial cell intermediate filaments: isolation, purification, and characterization. J Cell Biol 98:1407–1421

    Article  PubMed  CAS  Google Scholar 

  28. Holwell TA, Schweitzer SC, Reyland ME, Evans RM (1999) Vimentin-dependent utilization of LDL-cholesterol in human adrenal tumor cells is not associated with the level of expression of apoE, sterol carrier protein-2, or caveolin. J Lipid Res 40:1440–1452

    PubMed  CAS  Google Scholar 

  29. Brown MJ, Hallam JA, Colucci-Guyon E, Shaw S (2001) Rigidity of circulating lymphocytes is primarily conferred by vimentin intermediate filaments. J Immunol 166:6640–6646

    PubMed  CAS  Google Scholar 

  30. Borradori L, Sonnenberg A (1999) Structure and function of hemidesmosomes: more than simple adhesion complexes. J Invest Dermatol 112:411–418

    Article  PubMed  CAS  Google Scholar 

  31. Gonzales M, Weksler B, Tsuruta D, Goldman RD, Yoon KJ, Hopkinson SB, Flitney FW, Jones JCR (2001) Structure and function of a vimentin-associated matrix adhesion in endothelial cells. Mol Biol Cell 12:85–100

    PubMed  CAS  Google Scholar 

  32. Correia I, Chu D, Chou YH, Goldman RD, Matsudaira P (1999) Integrating the actin and vimentin cytoskeletons: adhesion-dependent formation of fimbrinvimentin complexes in macrophages. J Cell Biol 146:831–842

    Article  PubMed  CAS  Google Scholar 

  33. Tsuruta D, Jones JCR (2003) The vimentin cytoskeleton regulates focal contact size and adhesion of endothelial cells subjected to shear stress. J Cell Sci 116:4977–4984

    Article  PubMed  CAS  Google Scholar 

  34. van Beijnum JR, Dings RP, van der LE, Zwaans BM, Ramaekers FC, Mayo KH, Griffioen AW (2006) Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature. Blood 108:2339–2348

    Article  PubMed  CAS  Google Scholar 

  35. Takenouchi T, Miyashita N, Ozutsumi K, Rose MT, Aso H (2004) Role of caveolin-1 and cytoskeletal proteins, actin and vimentin, in adipogenesis of bovine intramuscular preadipocyte cells. Cell Biol Int 28:615–623

    Article  PubMed  CAS  Google Scholar 

  36. Sprenger RR, Fontijn RD, van MJ, Pannekoek H, Horrevoets AJ (2006) Spatial segregation of transport and signalling functions between human endothelial caveolae and lipid raft proteomes. Biochem J 400:401–410

    Article  PubMed  CAS  Google Scholar 

  37. Runembert I, Queffeulou G, Federici P, Vrtovsnik F, Colucci-Guyon E, Babinet C, Briand P, Trugnan G, Friedlander G, Terzi F (2002) Vimentin affects localization and activity of sodium-glucose cotransporter SGLT1 in membrane rafts. J Cell Sci 115:713–724

    PubMed  CAS  Google Scholar 

  38. McMahon KA, Zhu M, Kwon SW, Liu P, Zhao Y, Anderson RG (2006) Detergent-free caveolae proteome suggests an interaction with ER and mitochondria. Proteomics 6:143–152

    Article  PubMed  CAS  Google Scholar 

  39. Glenney JR Jr (1989) Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J Biol Chem 264:20163–20166

    PubMed  CAS  Google Scholar 

  40. Glenney JR Jr, Zokas L (1989) Novel tyrosine kinase substrates from Rous sarcoma virus-transformed cells are present in the membrane skeleton. J Cell Biol 108:2401–2408

    Article  PubMed  CAS  Google Scholar 

  41. Li S, Seitz R, Lisanti MP (1996) Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem 271:3863–3868

    Article  PubMed  CAS  Google Scholar 

  42. Lee H, Woodman SE, Engelman JA, Volonte D, Galbiati F, Kaufman HL, Lublin DM, Lisanti MP (2001) Palmitoylation of caveolin-1 at a single site (Cys-156) controls its coupling to the c-Src tyrosine kinase. Targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1 (Tyr-14). J Biol Chem 276:35150–35158

    Article  PubMed  CAS  Google Scholar 

  43. Sanguinetti AR, Mastick CC (2003) c-Abl is required for oxidative stress-induced phosphorylation of caveolin-1 on tyrosine 14. Cell Signal 15:289–298

    Article  PubMed  CAS  Google Scholar 

  44. Lee H, Volonte D, Galbiati F, Iyengar P, Lublin DM, Bregman DB, Wilson MT, Campos-Gonzalez R, Bouzahzah B, Pestell RG, Scherer PE, Lisanti MP (2000) Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol 14:1750–1775

    Article  PubMed  CAS  Google Scholar 

  45. Cao H, Courchesne WE, Mastick CC (2002) A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: recruitment of C-terminal Src kinase. J Biol Chem 277:8771–8774

    Article  PubMed  CAS  Google Scholar 

  46. del Pozo MA, Balasubramanian N, Alderson NB, Kiosses WB, Grande-Garcia A, Anderson RG, Schwartz MA (2005) Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nat Cell Biol 7:901–908

    Article  PubMed  Google Scholar 

  47. Gaus K, Le LS, Balasubramanian N, Schwartz MA (2006) Integrin-mediated adhesion regulates membrane order. J Cell Biol 174:725–734

    Article  PubMed  CAS  Google Scholar 

  48. Ikeda S, Ushio-Fukai M, Zuo L, Tojo T, Dikalov S, Patrushev NA, Alexander RW (2005) Novel role of ARF6 in vascular endothelial growth factor-induced signaling and angiogenesis. Circ Res 96:467–475

    Article  PubMed  CAS  Google Scholar 

  49. Podar K, Shringarpure R, Tai YT, Simoncini M, Sattler M, Ishitsuka K, Richardson PG, Hideshima T, Chauhan D, Anderson KC (2004) Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Res 64:7500–7506

    Article  PubMed  CAS  Google Scholar 

  50. Labrecque L, Nyalendo C, Langlois S, Durocher Y, Roghi C, Murphy G, Gingras D, Beliveau R (2004) Src-mediated tyrosine phosphorylation of caveolin-1 induces its association with membrane type 1 matrix metalloproteinase. J Biol Chem 279:52132–52140

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by American Heart Association Post Doctoral Fellowship 0525466B (to V.S.), and by American Cancer Society grant RSG-07-292-01-CSM (to M.-O.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Odile Parat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santilman, V., Baran, J., Anand-Apte, B. et al. Caveolin-1 polarization in transmigrating endothelial cells requires binding to intermediate filaments. Angiogenesis 10, 297–305 (2007). https://doi.org/10.1007/s10456-007-9083-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-007-9083-z

Keywords

Navigation