Skip to main content
Log in

Molecular genetics of AMD and current animal models

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

During the past few years systematic investigation into the epidemiology, genetics, and pathophysiology of age-related macular degeneration (AMD) has provided important new insight into this leading cause of vision loss in older persons. These studies provide a view of AMD as a complex trait influenced by well-established genetic and environmental risks that leads to the deposition of inflammatory deposits in the outer retina. This maculopathy leads to visual dysfunction through a variety of mechanisms and complications that can be observed in both humans and animal models. In this review, the risks associated with AMD in humans and the animal models used to study AMD and its complications will be summarized. No effort has been made to perform a comprehensive citation of all areas of AMD genetics and animal models, but rather a selection of observations and supporting references illustrative of the current state of the field is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anderson DH, Mullins RF, Hageman GS, Johnson LV (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134:411–431

    Article  PubMed  CAS  Google Scholar 

  2. Johnson LV, Anderson DH (2004) Age-related macular degeneration and the extracellular matrix. N Engl J Med 351:320–322

    Article  PubMed  CAS  Google Scholar 

  3. Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20:705–732

    Article  PubMed  CAS  Google Scholar 

  4. Crabb JW, Miyagi M, Gu X et al (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci USA 99:14682–14687

    Article  PubMed  CAS  Google Scholar 

  5. Curcio CA, Medeiros NE, Millican CL (1998) The alabama age-related macular degeneration grading system for donor eyes. Invest Ophthalmol Vis Sci 39:1085–1096

    PubMed  CAS  Google Scholar 

  6. Klein R, Davis MD, Magli YL, Segal P, Klein BE, Hubbard L (1991) The Wisconsin age-related maculopathy grading system. Ophthalmology 98:1128–1134

    PubMed  CAS  Google Scholar 

  7. Bird AC, Bressler NM, Bressler SB et al (1995) An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group. Surv Ophthalmol 39:367–374

    Article  PubMed  CAS  Google Scholar 

  8. Olsen TW, Feng X (2004) The Minnesota Grading System of eye bank eyes for age-related macular degeneration. Invest Ophthalmol Vis Sci 45:4484–4490

    Article  PubMed  Google Scholar 

  9. Ferris FL, Davis MD, Clemons TE et al (2005) A simplified severity scale for age-related macular degeneration: AREDS Report No. 18. Arch Ophthalmol 123:1570–1574

    Article  PubMed  Google Scholar 

  10. Davis MD, Gangnon RE, Lee LY et al (2005) The Age-Related Eye Disease Study severity scale for age-related macular degeneration: AREDS Report No. 17. Arch Ophthalmol 123:1484–1498

    Article  PubMed  Google Scholar 

  11. Klein ML, Schultz DW, Edwards A et al (1998) Age-related macular degeneration. Clinical features in a large family and linkage to chromosome 1q. Arch Ophthalmol 116:1082–1088

    PubMed  CAS  Google Scholar 

  12. Schultz DW, Klein ML, Humpert AJ et al (2003) Analysis of the ARMD1 locus: evidence that a mutation in HEMICENTIN-1 is associated with age-related macular degeneration in a large family. Hum Mol Genet 12:3315–3323

    Article  PubMed  CAS  Google Scholar 

  13. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES (2001) High-resolution haplotype structure in the human genome. Nat Genet 29:229–232

    Article  PubMed  CAS  Google Scholar 

  14. Reich DE, Cargill M, Bolk S et al (2001) Linkage disequilibrium in the human genome. Nature 411:199–204

    Article  PubMed  CAS  Google Scholar 

  15. Klein RJ, Zeiss C, Chew EY et al (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389

    Article  PubMed  CAS  Google Scholar 

  16. Edwards AO, Ritter R 3rd, Abel KJ, Manning A, Panhuysen C, Farrer LA (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308:421–424

    Article  PubMed  CAS  Google Scholar 

  17. Haines JL, Hauser MA, Schmidt S et al (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308:419–421

    Article  PubMed  CAS  Google Scholar 

  18. Hageman GS, Anderson DH, Johnson LV et al (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci USA 102 (20):7053–7054

    Article  CAS  Google Scholar 

  19. Rodriguez de Cordoba S, Esparza-Gordillo J, Goicoechea de Jorge E, Lopez-Trascasa M, Sanchez-Corral P (2004) The human complement factor H: functional roles, genetic variations and disease associations. Mol Immunol 41:355–367

    Article  CAS  Google Scholar 

  20. Maller J, George S, Purcell S et al (2006) Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration. Nat Genet 38:1055–1059

    Article  PubMed  CAS  Google Scholar 

  21. Li M, Atmaca-Sonmez P, Othman M et al (2006) CFH haplotypes without the Y402H coding variant show strong association with susceptibility to age-related macular degeneration. Nat Genet 38:1049–1054

    Article  PubMed  CAS  Google Scholar 

  22. Hughes AE, Orr N, Esfandiary H, Diaz-Torres M, Goodship T, Chakravarthy U (2006) A common CFH haplotype, with deletion of CFHR1 and CFHR3, is associated with lower risk of age-related macular degeneration. Nat Genet 38:1173–1177

    Article  PubMed  CAS  Google Scholar 

  23. Fisher SA, Abecasis GR, Yashar BM et al (2005) Meta-analysis of genome scans of age-related macular degeneration. Hum Mol Genet 14:2257–2264

    Article  PubMed  CAS  Google Scholar 

  24. Weeks DE, Conley YP, Tsai HJ et al (2004) Age-related maculopathy: a genomewide scan with continued evidence of susceptibility loci within the 1q31, 10q26, and 17q25 regions. Am J Hum Genet 75:174–189

    Article  PubMed  CAS  Google Scholar 

  25. Seddon JM, Santangelo SL, Book K, Chong S, Cote J (2003) A genomewide scan for age-related macular degeneration provides evidence for linkage to several chromosomal regions. Am J Hum Genet 73:780–790

    Article  PubMed  CAS  Google Scholar 

  26. Schick JH, Iyengar SK, Klein BE et al (2003) A whole-genome screen of a quantitative trait of age-related maculopathy in sibships from the Beaver Dam Eye Study. Am J Hum Genet 72:1412–1424

    Article  PubMed  CAS  Google Scholar 

  27. Majewski J, Schultz DW, Weleber RG et al (2003) Age-related macular degeneration–a genome scan in extended families. Am J Hum Genet 73:540–550

    Article  PubMed  CAS  Google Scholar 

  28. Weeks DE, Conley YP, Mah TS et al. (2000) A full genome scan for age-related maculopathy. Hum Mol Genet 9:1329–1349

    Article  PubMed  CAS  Google Scholar 

  29. Jakobsdottir J, Conley YP, Weeks DE, Mah TS, Ferrell RE, Gorin MB (2005) Susceptibility genes for age-related maculopathy on chromosome 10q26. Am J Hum Genet 77:389–407

    Article  PubMed  CAS  Google Scholar 

  30. Rivera A, Fisher SA, Fritsche LG et al (2005) Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum Mol Genet 14:3227–3236

    Article  PubMed  CAS  Google Scholar 

  31. Conley YP, Jakobsdottir J, Mah T et al (2006) CFH, ELOVL4, PLEKHA1 and LOC387715 genes and susceptibility to age-related maculopathy: AREDS and CHS cohorts and meta-analyses. Hum Mol Genet 15:3206–3218

    Article  PubMed  CAS  Google Scholar 

  32. Schmidt S, Hauser MA, Scott WK et al (2006) Cigarette smoking strongly modifies the association of LOC387715 and age-related macular degeneration. Am J Hum Genet 78:852–864

    Article  PubMed  CAS  Google Scholar 

  33. Yang Z, Camp NJ, Sun H et al (2006) A variant of the HTRA1 Gene increases susceptibility to age-related macular degeneration. Science 314(5801):992–993

    Article  PubMed  CAS  Google Scholar 

  34. Dewan A, Liu M, Hartman S et al (2006) HTRA1 Promoter polymorphism in Wet Age-Related Macular Degeneration. Science 314(5801):989–992

    Article  PubMed  CAS  Google Scholar 

  35. Gold B, Merriam JE, Zernant J et al (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38:458–462

    Article  PubMed  CAS  Google Scholar 

  36. Zareparsi S, Branham KE, Li M et al (2005) Strong association of the Y402H variant in complement factor H at 1q32 with susceptibility to age-related macular degeneration. Am J Hum Genet 77:149–153

    Article  PubMed  CAS  Google Scholar 

  37. Baird PN, Richardson AJ, Robman LD et al. (2006) Apolipoprotein (APOE) gene is associated with progression of age-related macular degeneration (AMD). Hum Mutat 27:337–342

    Article  PubMed  CAS  Google Scholar 

  38. Souied EH, Benlian P, Amouyel P et al (1998) The epsilon4 allele of the apolipoprotein E gene as a potential protective factor for exudative age-related macular degeneration. Am J Ophthalmol 125:353–359

    Article  PubMed  CAS  Google Scholar 

  39. Klaver CC, Kliffen M, van Duijn CM et al (1998) Genetic association of apolipoprotein E with age-related macular degeneration [published erratum appears in Am J Hum Genet 1998 Oct;63(4):1252]. Am J Hum Genet 63:200–206

    Article  PubMed  CAS  Google Scholar 

  40. Jun G, Klein BE, Klein R et al (2005) Genome-wide analyses demonstrate novel loci that predispose to drusen formation. Invest Ophthalmol Vis Sci 46:3081–3088

    Article  PubMed  Google Scholar 

  41. Zareparsi S, Reddick AC, Branham KE et al (2004) Association of apolipoprotein E alleles with susceptibility to age-related macular degeneration in a large cohort from a single center. Invest Ophthalmol Vis Sci 45:1306–1310

    Article  PubMed  Google Scholar 

  42. Schmidt S, Klaver C, Saunders A et al (2002) A pooled case-control study of the apolipoprotein E (APOE) gene in age-related maculopathy. Ophthalmic Genet 23:209–223

    Article  PubMed  Google Scholar 

  43. Kaur I, Hussain A, Hussain N et al (2006) Analysis of CFH, TLR4, and APOE polymorphism in India suggests the Tyr402His variant of CFH to be a global marker for age-related macular degeneration. Invest Ophthalmol Vis Sci 47:3729–3735

    Article  PubMed  Google Scholar 

  44. Wong TY, Shankar A, Klein R et al (2006) Apolipoprotein E gene and early age-related maculopathy: the Atherosclerosis Risk in Communities Study. Ophthalmology 113:255–259

    Article  PubMed  Google Scholar 

  45. Schmidt S, Haines JL, Postel EA et al (2005) Joint effects of smoking history and APOE genotypes in age-related macular degeneration. Mol Vis 11:941–949

    PubMed  CAS  Google Scholar 

  46. Schultz DW, Klein ML, Humpert A et al (2003) Lack of an association of apolipoprotein E gene polymorphisms with familial age-related macular degeneration. Arch Ophthalmol 121:679–683

    Article  PubMed  CAS  Google Scholar 

  47. Bernstein PS, Leppert M, Singh N et al (2002) Genotype-phenotype analysis of ABCR variants in macular degeneration probands and siblings. Invest Ophthalmol Vis Sci 43:466–473

    PubMed  Google Scholar 

  48. Allikmets R (2000) Further evidence for an association of ABCR alleles with age-related macular degeneration. The International ABCR Screening Consortium. Am J Hum Genet 67:487–491

    Article  PubMed  CAS  Google Scholar 

  49. Ayyagari R, Zhang K, Hutchinson A et al (2001) Evaluation of the ELOVL4 gene in patients with age-related macular degeneration. Ophthalmic Genet 22:233–239

    Article  PubMed  CAS  Google Scholar 

  50. Shastry BS, Trese MT (1999) Evaluation of the peripherin/RDS gene as a candidate gene in families with age-related macular degeneration. Ophthalmologica 213:165–170

    Article  PubMed  CAS  Google Scholar 

  51. Narendran N, Guymer RH, Cain M, Baird PN (2005) Analysis of the EFEMP1 gene in individuals and families with early onset drusen. Eye 19:11–15

    Article  PubMed  CAS  Google Scholar 

  52. Stone EM, Braun TA, Russell SR et al. (2004) Missense variations in the fibulin 5 gene and age-related macular degeneration. N Engl J Med 351:346–353

    Article  PubMed  CAS  Google Scholar 

  53. Allikmets R, Seddon JM, Bernstein PS et al (1999) Evaluation of the Best disease gene in patients with age-related macular degeneration and other maculopathies. Hum Genet 104:449–453

    Article  PubMed  CAS  Google Scholar 

  54. Radu RA, Mata NL, Bagla A, Travis GH (2004) Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt’s macular degeneration. Proc Natl Acad Sci USA 101:5928–5933

    Article  PubMed  CAS  Google Scholar 

  55. Mata NL, Tzekov RT, Liu X, Weng J, Birch DG, Travis GH (2001) Delayed dark-adaptation and lipofuscin accumulation in abcr+/− mice: implications for involvement of ABCR in age-related macular degeneration. Invest Ophthalmol Vis Sci 42:1685–1690

    PubMed  CAS  Google Scholar 

  56. Mata NL, Weng J, Travis GH (2000) Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc Natl Acad Sci USA 97:7154–7159

    Article  PubMed  CAS  Google Scholar 

  57. Haines JL, Schnetz-Boutaud N, Schmidt S et al (2006) Functional candidate genes in age-related macular degeneration: significant association with VEGF, VLDLR, and LRP6. Invest Ophthalmol Vis Sci 47:329–335

    Article  PubMed  Google Scholar 

  58. Churchill AJ, Carter JG, Lovell HC et al (2006) VEGF polymorphisms are associated with neovascular age-related macular degeneration. Hum Mol Genet 15:2955–2961

    Article  PubMed  CAS  Google Scholar 

  59. Conley YP, Thalamuthu A, Jakobsdottir J et al (2005) Candidate gene analysis suggests a role for fatty acid biosynthesis and regulation of the complement system in the etiology of age-related maculopathy. Hum Mol Genet 14:1991–2002

    Article  PubMed  CAS  Google Scholar 

  60. Hamdi HK, Reznik J, Castellon R et al (2002) Alu DNA polymorphism in ACE gene is protective for age-related macular degeneration. Biochem Biophys Res Commun 295:668–672

    Article  PubMed  CAS  Google Scholar 

  61. Zareparsi S, Buraczynska M, Branham KE et al (2005) Toll-like receptor 4 variant D299G is associated with susceptibility to age-related macular degeneration. Hum Mol Genet 14:1449–1455

    Article  PubMed  CAS  Google Scholar 

  62. Tuo J, Smith BC, Bojanowski CM et al (2004) The involvement of sequence variation and expression of CX3CR1 in the pathogenesis of age-related macular degeneration. Faseb J 18:1297–1299

    PubMed  CAS  Google Scholar 

  63. Chan CC, Tuo J, Bojanowski CM, Csaky KG, Green WR (2005) Detection of CX3CR1 single nucleotide polymorphism and expression on archived eyes with age-related macular degeneration. Histol Histopathol 20:857–863

    PubMed  CAS  Google Scholar 

  64. Tuo J, Ning B, Bojanowski CM et al (2006) Synergic effect of polymorphisms in ERCC6 5’ flanking region and complement factor H on age-related macular degeneration predisposition. Proc Natl Acad Sci USA 103:9256–9261

    Article  PubMed  CAS  Google Scholar 

  65. Goverdhan SV, Howell MW, Mullins RF et al (2005) Association of HLA class I and class II polymorphisms with age-related macular degeneration. Invest Ophthalmol Vis Sci 46:1726–1734

    Article  PubMed  Google Scholar 

  66. Baird PN, Chu D, Guida E, Vu HT, Guymer R (2004) Association of the M55L and Q192R paraoxonase gene polymorphisms with age-related macular degeneration. Am J Ophthalmol 138:665–666

    Article  PubMed  CAS  Google Scholar 

  67. Fiotti N, Pedio M, Battaglia Parodi M et al (2005) MMP-9 microsatellite polymorphism and susceptibility to exudative form of age-related macular degeneration. Genet Med 7:272–277

    Article  PubMed  CAS  Google Scholar 

  68. Esfandiary H, Chakravarthy U, Patterson C, Young I, Hughes AE (2005) Association study of detoxification genes in age related macular degeneration. Br J Ophthalmol 89:470–474

    Article  PubMed  CAS  Google Scholar 

  69. Despriet DD, Klaver CC, Witteman JC et al (2006) Complement factor H polymorphism, complement activators, and risk of age-related macular degeneration. Jama 296:301–309

    Article  PubMed  Google Scholar 

  70. Schaumberg DA, Christen WG, Kozlowski P, Miller DT, Ridker PM, Zee RY (2006) A prospective assessment of the Y402H variant in complement factor H, genetic variants in C-reactive protein, and risk of age-related macular degeneration. Invest Ophthalmol Vis Sci 47:2336–2340

    Article  PubMed  Google Scholar 

  71. Kardys I, Klaver CC, Despriet DD et al (2006) A common polymorphism in the complement factor H gene is associated with increased risk of myocardial infarction: the Rotterdam Study. J Am Coll Cardiol 47:1568–1575

    Article  PubMed  CAS  Google Scholar 

  72. Hope GM, Dawson WW, Engel HM, Ulshafer RJ, Kessler MJ, Sherwood MB (1992) A primate model for age related macular drusen. Br J Ophthalmol 76:11–16

    PubMed  CAS  Google Scholar 

  73. Umeda S, Ayyagari R, Allikmets R et al (2005) Early-onset macular degeneration with drusen in a cynomolgus monkey (Macaca fascicularis) pedigree: exclusion of 13 candidate genes and loci. Invest Ophthalmol Vis Sci 46:683–691

    Article  PubMed  Google Scholar 

  74. Kliffen M, Lutgens E, Daemen MJ, de Muinck ED, Mooy CM, de Jong PT (2000) The APO(*)E3-Leiden mouse as an animal model for basal laminar deposit. Br J Ophthalmol 84:1415–1419

    Article  PubMed  CAS  Google Scholar 

  75. Dithmar S, Curcio CA, Le NA, Brown S, Grossniklaus HE (2000) Ultrastructural changes in Bruch’s membrane of apolipoprotein E-deficient mice. Invest Ophthalmol Vis Sci 41:2035–2042

    PubMed  CAS  Google Scholar 

  76. Dithmar S, Sharara NA, Curcio CA et al (2001) Murine high-fat diet and laser photochemical model of basal deposits in Bruch membrane. Arch Ophthalmol 119:1643–1649

    PubMed  CAS  Google Scholar 

  77. Rudolf M, Winkler B, Aherrahou Z, Doehring LC, Kaczmarek P, Schmidt-Erfurth U (2005) Increased expression of vascular endothelial growth factor associated with accumulation of lipids in Bruch’s membrane of LDL receptor knockout mice. Br J Ophthalmol 89:1627–1630

    Article  PubMed  CAS  Google Scholar 

  78. Gottsch JD, Bynoe LA, Harlan JB, Rencs EV, Green WR (1993) Light-induced deposits in Bruch’s membrane of protoporphyric mice. Arch Ophthalmol 111:126–129

    PubMed  CAS  Google Scholar 

  79. Cousins SW, Marin-Castano ME, Espinosa-Heidmann DG, Alexandridou A, Striker L, Elliot S (2003) Female gender, estrogen loss, and Sub-RPE deposit formation in aged mice. Invest Ophthalmol Vis Sci 44:1221–1229

    Article  PubMed  Google Scholar 

  80. Espinosa-Heidmann DG, Sall J, Hernandez EP, Cousins SW (2004) Basal laminar deposit formation in APO B100 transgenic mice: complex interactions between dietary fat, blue light, and vitamin E. Invest Ophthalmol Vis Sci 45:260–266

    Article  PubMed  Google Scholar 

  81. Espinosa-Heidmann DG, Suner IJ, Catanuto P, Hernandez EP, Marin-Castano ME, Cousins SW (2006) Cigarette smoke-related oxidants and the development of sub-RPE deposits in an experimental animal model of dry AMD. Invest Ophthalmol Vis Sci 47:729–737

    Article  PubMed  Google Scholar 

  82. Majji AB, Cao J, Chang KY et al (2000) Age-related retinal pigment epithelium and Bruch’s membrane degeneration in senescence-accelerated mouse. Invest Ophthalmol Vis Sci 41:3936–3942

    PubMed  CAS  Google Scholar 

  83. Ida H, Ishibashi K, Reiser K, Hjelmeland LM, Handa JT (2004) Ultrastructural aging of the RPE-Bruch’s membrane-choriocapillaris complex in the D-galactose-treated mouse. Invest Ophthalmol Vis Sci 45:2348–2354

    Article  PubMed  Google Scholar 

  84. Tian J, Ishibashi K, Ishibashi K et al (2005) Advanced glycation endproduct-induced aging of the retinal pigment epithelium and choroid: a comprehensive transcriptional response. Proc Natl Acad Sci USA 102:11846–11851

    Article  PubMed  CAS  Google Scholar 

  85. Karan G, Lillo C, Yang Z et al (2005) Lipofuscin accumulation, abnormal electrophysiology, and photoreceptor degeneration in mutant ELOVL4 transgenic mice: a model for macular degeneration. Proc Natl Acad Sci USA 102:4164–4169

    Article  PubMed  CAS  Google Scholar 

  86. Hahn P, Dentchev T, Qian Y, Rouault T, Harris ZL, Dunaief JL (2004) Immunolocalization and regulation of iron handling proteins ferritin and ferroportin in the retina. Mol Vis 10:598–607

    PubMed  CAS  Google Scholar 

  87. Rakoczy PE, Zhang D, Robertson T et al (2002) Progressive age-related changes similar to age-related macular degeneration in a transgenic mouse model. Am J Pathol 161:1515–1524

    PubMed  CAS  Google Scholar 

  88. Tanaka N, Ikawa M, Mata NL, Verma IM (2006) Choroidal neovascularization in transgenic mice expressing prokineticin 1: an animal model for age-related macular degeneration. Mol Ther 13:609–616

    Article  PubMed  CAS  Google Scholar 

  89. Miller H, Miller B, Ryan SJ (1986) The role of retinal pigment epithelium in the involution of subretinal neovascularization. Invest Ophthalmol Vis Sci 27:1644–1652

    PubMed  CAS  Google Scholar 

  90. Dobi ET, Puliafito CA, Destro M (1989) A new model of experimental choroidal neovascularization in the rat. Arch Ophthalmol 107:264–269

    PubMed  CAS  Google Scholar 

  91. Frank RN, Das A, Weber ML (1989) A model of subretinal neovascularization in the pigmented rat. Curr Eye Res 8:239–247

    PubMed  CAS  Google Scholar 

  92. Kiilgaard JF, Andersen MV, Wiencke AK et al (2005) A new animal model of choroidal neovascularization. Acta Ophthalmol Scand 83:697–704

    Article  PubMed  Google Scholar 

  93. Wang F, Rendahl KG, Manning WC, Quiroz D, Coyne M, Miller SS (2003) AAV-mediated expression of vascular endothelial growth factor induces choroidal neovascularization in rat. Invest Ophthalmol Vis Sci 44:781–790

    Article  PubMed  Google Scholar 

  94. Spilsbury K, Garrett KL, Shen WY, Constable IJ, Rakoczy PE (2000) Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization. Am J Pathol 157:135–144

    PubMed  CAS  Google Scholar 

  95. Schwesinger C, Yee C, Rohan RM et al (2001) Intrachoroidal neovascularization in transgenic mice overexpressing vascular endothelial growth factor in the retinal pigment epithelium. Am J Pathol 158:1161–1172

    PubMed  CAS  Google Scholar 

  96. Heckenlively JR, Hawes NL, Friedlander M et al (2003) Mouse model of subretinal neovascularization with choroidal anastomosis. Retina 23:518–522

    Article  PubMed  Google Scholar 

  97. Ambati J, Anand A, Fernandez S et al (2003) An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 9:1390–1397

    Article  PubMed  CAS  Google Scholar 

  98. Malek G, Johnson LV, Mace BE et al (2005) Apolipoprotein E allele-dependent pathogenesis: a model for age-related retinal degeneration. Proc Natl Acad Sci USA 102:11900–11905

    Article  PubMed  CAS  Google Scholar 

  99. Imamura Y, Noda S, Hashizume K et al (2006) Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc Natl Acad Sci USA 103:11282–11287

    Article  PubMed  CAS  Google Scholar 

  100. Fauser S, Luberichs J, Schuttauf F (2002) Genetic animal models for retinal degeneration. Surv Ophthalmol 47:357–367

    Article  PubMed  Google Scholar 

  101. Curcio CA, Owsley C, Jackson GR (2000) Spare the rods, save the cones in aging and age-related maculopathy. Invest Ophthalmol Vis Sci 41:2015–2018

    PubMed  CAS  Google Scholar 

  102. Snow KK, Seddon JM (1999) Do age-related macular degeneration and cardiovascular disease share common antecedents?. Ophthalmic Epidemiol 6:125–143

    Article  PubMed  CAS  Google Scholar 

  103. McGwin G Jr, Owsley C, Curcio CA, Crain RJ (2003) The association between statin use and age related maculopathy. Br J Ophthalmol 87:1121–1125

    Article  PubMed  Google Scholar 

  104. Curcio CA, Millican CL (1999) Basal linear deposit and large drusen are specific for early age-related maculopathy. Arch Ophthalmol 117:329–339

    PubMed  CAS  Google Scholar 

  105. Heriot WJ, Henkind P, Bellhorn RW, Burns MS (1984) Choroidal neovascularization can digest Bruch’s membrane. A prior break is not essential. Ophthalmology 91:1603–1608

    PubMed  CAS  Google Scholar 

  106. Zhang K, Kniazeva M, Han M et al (2001) A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat Genet 27:89–93

    PubMed  CAS  Google Scholar 

  107. Edwards AO, Donoso LA, Ritter R 3rd (2001) A novel gene for autosomal dominant Stargardt-like macular dystrophy with homology to the SUR4 protein family. Invest Ophthalmol Vis Sci 42:2652–2663

    PubMed  CAS  Google Scholar 

  108. Vasireddy V, Jablonski MM, Mandal MN et al (2006) Elovl4 5-bp-deletion knock-in mice develop progressive photoreceptor degeneration. Invest Ophthalmol Vis Sci 47:4558–4568

    Article  PubMed  Google Scholar 

  109. Yannuzzi LA, Negrao S, Iida T et al (2001) Retinal angiomatous proliferation in age-related macular degeneration. Retina 21:416–434

    Article  PubMed  CAS  Google Scholar 

  110. Delcourt C, Cristol JP, Leger CL, Descomps B, Papoz L (1999) Associations of antioxidant enzymes with cataract and age-related macular degeneration. The POLA Study. Pathologies Oculaires Liees a l’Age. Ophthalmology 106:215–222

    Article  PubMed  CAS  Google Scholar 

  111. Clark SJ, Higman VA, Mulloy B et al (2006) His-384 allotypic variant of factor H associated with age-related macular degeneration has different heparin binding properties from the non-disease-associated form. J Biol Chem 281:24713–24720

    Article  PubMed  CAS  Google Scholar 

  112. Johnson PT, Betts KE, Radeke MJ, Hageman GS, Anderson DH, Johnson LV (2006) Individuals homozygous for the age-related macular degeneration risk-conferring variant of complement factor H have elevated levels of CRP in the choroid. Proc Natl Acad Sci USA 103:17456–17461

    Article  PubMed  CAS  Google Scholar 

  113. Zhou J, Jang YP, Kim SR, Sparrow JR (2006) Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proc Natl Acad Sci USA 103:16182–16187

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Eye Institute (EY014467), the Foundation Fighting Blindness, Owing Mills, MD, Research to Prevent Blindness, New York, NY, the Presbyterian Hospital of Dallas, Dallas, TX, and the Presbyterian Hospital Foundation, Dallas, TX. Additional support from anonymous donors and the Mayo Clinic Department of Ophthalmology is gratefully acknowledged. Conflict of interest: Dr. Edwards receives funding from private and federal sources to study macular degeneration and he has intellectual property interests related to genetic testing for AMD and identity testing.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, A.O., Malek, G. Molecular genetics of AMD and current animal models. Angiogenesis 10, 119–132 (2007). https://doi.org/10.1007/s10456-007-9064-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-007-9064-2

Keywords

Navigation