Skip to main content
Log in

Pointwise differentiability of higher order for sets

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

The present paper develops two concepts of pointwise differentiability of higher order for arbitrary subsets of Euclidean space defined by comparing their distance functions to those of smooth submanifolds. Results include that differentials are Borel functions, higher-order rectifiability of the set of differentiability points, and a Rademacher result. One concept is characterised by a limit procedure involving inhomogeneously dilated sets. The original motivation to formulate the concepts stems from studying the support of stationary integral varifolds. In particular, strong pointwise differentiability of every positive integer order is shown at almost all points of the intersection of the support with a given plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Whenever A is a set, \(\mathbf {1}_{A}\) denotes the identity map of A, see [14, p. 669].

  2. Equivalently, the topology on \(\mathbf {G}({n},{m})\) is characterised by the requirement that \(\mathbf {G}({n},{m})\) becomes a homogeneous space through the canonical transitive left action of the orthogonal group \({\mathbf {O}}(n)\) on \(\mathbf {G}({n},{m})\), see [14, 2.7.1, 3.2.28 (2) (4)].

  3. The symbol \(\mathbf {B}(a,r)\) denotes the closed ball with centre a and radius r, see [14, 2.8.1].

  4. The Russian original is [36].

  5. The symbol \(\mathscr {L}^{m}\) denotes the \({m}\) dimensional Lebesgue measure, see [14, 2.6.5].

  6. The Russian original is [18].

  7. The tangent cone \({{\,\mathrm{Tan}\,}}(A,a)\) consists of all \(v \in \mathbf {R}^{n}\) such that for \(\varepsilon > 0\) there exist \(x \in A\) and \(0< r < \infty \) such that \(|x-a| < \varepsilon \) and \(|r(x-a)-v| < \varepsilon \), see [14, 3.1.21]. In set-valued analysis, this cone is called “contingent cone” of A at a, see [2, 4.1.1].

  8. The symbol \(\mathscr {H}^{m}\) denotes the \({m}\) dimensional Hausdorff measure, see [14, 2.10.2].

  9. A subset of \(\mathbf {R}^{n}\) is called countably \({m}\) rectifiable if and only if it can be covered by the union of a countable family of Lipschitzian images of subsets of \(\mathbf {R}^{m}\), see [14, 3.2.14 (2)].

  10. The map f is called of class k if and only if its domain is open and it is k times continuously differentiable, see [14, 3.1.11].

  11. If V and W are vectorspaces, then \(\bigodot ^0 (V,W)=W\) and \(\bigodot ^i (V,W)\) is the vectorspace of all symmetric i linear maps from \(V^i\) into W whenever i is a positive integer, see [14, 1.10.1].

  12. If V and W are vectorspaces, i is a positive integer, and \(\phi \in \bigodot ^i (V,W)\), then

    $$\begin{aligned} \langle v^i/i!, \phi \rangle = i!^{-1} \phi ( v, \ldots , v ) \quad \text {for }v \in V, \end{aligned}$$

    where the power \(v^i\) is computed in \(\bigodot _*V\), see [14, 1.9.1, 1.10.1, 1.10.4]. Similarly, if \(i = 0\) and \(\phi \in \bigodot ^i ( V,W )\), then

    $$\begin{aligned} \langle v^i/i!, \phi \rangle = \phi \quad \text {for }v \in V. \end{aligned}$$
  13. The k jet of f at a is the polynomial function \(P : X \rightarrow Y\) of degree at most k satisfying the equation \(P (x) = \sum _{i=0}^k \langle (x-a)^i/i!, {{\,\mathrm{D}\,}}^i f(a) \rangle \) for \(x \in X\), see [14, 3.1.11].

  14. If g is a map between metric spaces, then \({{\,\mathrm{Lip}\,}}g\) is its Lipschitz constant, see [14, 2.2.7].

  15. The closure of a set A is denoted \({{\,\mathrm{\mathrm{Clos}\,}\,}}A\), see [14, p. 669].

  16. The symbol \(\mathbf {U}(a,r)\) denotes the open ball with centre a and radius r, see [14, 2.8.1].

  17. The \({m}\) dimensional density of a measure \(\phi \) over \(\mathbf {R}^{n}\) at a equals

    $$\begin{aligned} \varvec{\Theta }^{m}( \phi , a ) = \lim _{r \rightarrow 0+} \frac{{\phi }\,{\mathbf {B}(a,r)}}{\varvec{\alpha }({m})r^{m}}, \end{aligned}$$

    where \(\varvec{\alpha }({m})= {\mathscr {L}^{m}}\,{\mathbf {B}(0,1)}\) if \({m}> 0\) and \(\varvec{\alpha }(0) = 1\), see [14, 2.7.16 (1), 2.10.19].

  18. The term “univalent” is also known as “injective”.

  19. Anticipating the results of this paper and its logical sequel [37], we remark that—employing the terminology of approximate differentiation from [37, 3.8, 3.19]—the following proposition may be deduced from [37, 4.1, 4.3, 4.11] and 3.103.11 (4): Whenever\(a \in {\mathbf {R}}^n\), \(A \subset {\mathbf {R}}^n\), kis a positive integer,\(0 \le \alpha \le 1\), \(\gamma = k\)if\(\alpha = 0\)and\(\gamma = ( k, \alpha )\)if\(\alpha > 0\), A is approximately differentiable of order 1 ata, \(T = {{\,\mathrm{\mathrm{ap}\,}\,}}{{\,\mathrm{Tan}\,}}(A,a)\), and\(m = \dim T \ge 1\), the following two conditions are equivalent:

    1. (1)

      The setAis approximately differentiable of order \((k,\alpha )\)ata.

    2. (2)

      There exists a subsetBof\({\mathbf {R}}^n\)that is pointwise differentiable of order\(\gamma \)ataand satisfies the conditions\({{\,\mathrm{Tan}\,}}(B,a) = T\)and\(\varvec{\Theta }^{m}( \mathscr {H}^m {{\,\mathrm{\llcorner }\,}}A{{\,\mathrm{\sim }\,}}B, a) = 0\).

    In this case, \({{\,\mathrm{\mathrm{ap}\,}\,}}{{\,\mathrm{D}\,}}^i A (a) = {{\,\mathrm{\mathrm{pt}\,}\,}}{{\,\mathrm{D}\,}}^i B (a,T)\)for\(i = 2, \ldots , k\). In (2), one may require \(B \subset A\).

  20. As the proof of [17, Theorem 2] is omitted in that reference as “completely analogous” to [17, Theorem 1], the reader may find it helpful to notice that the presently needed case of [17, Theorem 2] is in fact simpler than [17, Theorem 1] provided one refers to [40, VI.2.2.2, VI.2.3.1–3] instead of [14, 3.1.14] for the Whitney type extension theorem.

  21. Whenever X and Y are sets \(Y^X\) denotes set of maps from X into Y, see [14, p. 669].

  22. If \(A \subset \mathbf {R}\) and \(f : A \rightarrow \mathbf {R}\) then f is of class \(\infty \) relative to A if and only if there exist an open subset U of \(\mathbf {R}\) and \(g : U \rightarrow \mathbf {R}\) of class \(\infty \) with \(A \subset U\) and \(f=g|A\), see [14, 3.1.22].

  23. If g maps a subset of \(\mathbf {R}\) into \(\mathbf {R}\) and g is k times differentiable at x, then \(g^{(k)}(x) \in \mathbf {R}\) denotes the k-th derivative of g at x, see [14, 3.1.11].

  24. By definition \(\varvec{\alpha }({m})= {\mathscr {L}^{m}}\,{\mathbf {B}(0,1)}\), see [14, 2.7.16 (1)].

  25. The adjoint linear map \(\mathbf {p}^*: \mathbf {R}^{m}\rightarrow \mathbf {R}^{n}\) associated with \(\mathbf {p}\) satisfies \(\mathbf {p}^*(x) = (x_1, \ldots , x_{m}, 0 ) \in \mathbf {R}^{n}\) for \(x = (x_1, \ldots , x_{m}) \in \mathbf {R}^{m}\), see [14, 1.7.4].

References

  1. Allard, W.K., Almgren Jr., F.J.: The structure of stationary one dimensional varifolds with positive density. Invent. Math. 34(2), 83–97 (1976). https://doi.org/10.1007/BF01425476

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Modern Birkhäuser Classics. Birkhäuser Boston Inc., Boston (2009). https://doi.org/10.1007/978-0-8176-4848-0. Reprint of the 1990 edition

    Book  Google Scholar 

  3. Allard, W.K.: On the first variation of a varifold. Ann. of Math. 2(95), 417–491 (1972). https://doi.org/10.2307/1970868

    Article  MathSciNet  MATH  Google Scholar 

  4. Almgren, Jr. F.J.: Almgren’s Big Regularity Paper, Volume 1 of World Scientific Monograph Series in Mathematics. World Scientific Publishing Co. Inc., River Edge (2000). \(Q\)-valued functions minimizing Dirichlet’s integral and the regularity of area-minimizing rectifiable currents up to codimension 2, With a preface by Jean E. Taylor and Vladimir Scheffer. https://doi.org/10.1142/9789812813299

  5. Anzellotti, G., Serapioni, R.: \({\cal{C}}^k\)-rectifiable sets. J. Reine Angew. Math. 453, 1–20 (1994). https://doi.org/10.1515/crll.1994.453.1

    Article  MathSciNet  MATH  Google Scholar 

  6. Beer, G.: On convergence of closed sets in a metric space and distance functions. Bull. Aust. Math. Soc. 31(3), 421–432 (1985). https://doi.org/10.1017/S0004972700009370

    Article  MathSciNet  MATH  Google Scholar 

  7. Brakke, K.A.: The Motion of a Surface by Its Mean Curvature, Volume 20 of Mathematical Notes. Princeton University Press, Princeton (1978)

    MATH  Google Scholar 

  8. Campanato, S.: Proprietà di una famiglia di spazi funzionali. Ann. Scuola Norm. Sup. Pisa (3) 18, 137–160 (1964)

    MathSciNet  MATH  Google Scholar 

  9. Caffarelli, L., Crandall, M.G., Kocan, M., Święch, A.: On viscosity solutions of fully nonlinear equations with measurable ingredients. Comm. Pure Appl. Math. 49(4), 365–397 (1996). http://doi.org/10.1002/(SICI)1097-0312(199604)49:4<365::AID-CPA3>3.3.CO;2-V

  10. Calderón, A.-P., Zygmund, A.: Local properties of solutions of elliptic partial differential equations. Studia Math. 20, 171–225 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  11. David, G.: Limits of Almgren quasiminimal sets. In: Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), volume 320 of Contemporary Mathematics, pp. 119–145. American Mathematical Society, Providence, (2003). https://doi.org/10.1090/conm/320/05603

  12. Dunford, N., Schwartz, J.T.: Linear Operators. I. General Theory. With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7. Interscience Publishers, Inc., New York, London (1958)

  13. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Textbooks in Mathematics, revised edition. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  14. Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, vol. 153. Springer, New York (1969). https://doi.org/10.1007/978-3-642-62010-2

    Book  Google Scholar 

  15. Hewitt, E., Stromberg, K.: Real and Abstract Analysis. Springer, New York (1975). A modern treatment of the theory of functions of a real variable, Third printing, Graduate Texts in Mathematics, No. 25. https://doi.org/10.1007/978-3-642-88044-5

  16. Ilmanen, T.: A strong maximum principle for singular minimal hypersurfaces. Calc. Var. Partial Differential Equations 4(5), 443–467 (1996). https://doi.org/10.1007/s005260050049

    Article  MathSciNet  MATH  Google Scholar 

  17. Isakov, N.M.: On a global property of approximately differentiable functions. Mathematical Notes 41(4), 280–285 (1987). https://doi.org/10.1007/BF01137673

    Article  MathSciNet  MATH  Google Scholar 

  18. Isakov, N.M.: On a global property of approximately differentiable functions. (Russian). Mat. Zametki 41(4), 500–508 (1987)

    MathSciNet  Google Scholar 

  19. Járai, A.: Derivatives are Borel functions. Aequationes Math. 29(1), 24–27 (1985). https://doi.org/10.1007/BF02189809

    Article  MathSciNet  MATH  Google Scholar 

  20. Kechris, A.S.: Classical Descriptive Set Theory, Volume 156 of Graduate Texts in Mathematics, vol. 156. Springer, New York (1995). https://doi.org/10.1007/978-1-4612-4190-4

    Book  Google Scholar 

  21. Kelley, J.L.: General Topology. Springer, New York (1975). Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics, No. 27

    MATH  Google Scholar 

  22. Kolasiński, S., Menne, U.: Decay rates for the quadratic and super-quadratic tilt-excess of integral varifolds. NoDEA Nonlinear Differential Equations Appl. 24(2), Art. 17, 56 (2017). https://doi.org/10.1007/s00030-017-0436-z

  23. Liu, F.-C.: A localized Lusin theorem and a Rademacher type theorem. Bull. Inst. Math. Acad. Sin. (N.S.) 3(2), 243–253 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Lin, C.-L., Liu, F.-C.: Approximate differentiability according to Stepanoff-Whitney-Federer. Indiana Univ. Math. J. 62(3), 855–868 (2013). https://doi.org/10.1512/iumj.2013.62.5024

    Article  MathSciNet  MATH  Google Scholar 

  25. Menne, U.: Some applications of the isoperimetric inequality for integral varifolds. Adv. Calc. Var. 2(3), 247–269 (2009). https://doi.org/10.1515/ACV.2009.010

    Article  MathSciNet  MATH  Google Scholar 

  26. Menne, U.: A Sobolev Poincaré type inequality for integral varifolds. Calc. Var. Partial Differential Equations 38(3–4), 369–408 (2010). https://doi.org/10.1007/s00526-009-0291-9

    Article  MathSciNet  MATH  Google Scholar 

  27. Menne, U.: Decay estimates for the quadratic tilt-excess of integral varifolds. Arch. Ration. Mech. Anal. 204(1), 1–83 (2012). https://doi.org/10.1007/s00205-011-0468-1

    Article  MathSciNet  MATH  Google Scholar 

  28. Menne, U.: A sharp lower bound on the mean curvature integral with critical power for integral varifolds, 2012. In: Abstracts from the Workshop Held July 22–28 (2012). Organized by Camillo De Lellis, Gerhard Huisken and Robert Jerrard, Oberwolfach Reports. Vol. 9, no. 3. https://doi.org/10.4171/OWR/2012/36

  29. Menne, U.: Second order rectifiability of integral varifolds of locally bounded first variation. J. Geom. Anal. 23(2), 709–763 (2013). https://doi.org/10.1007/s12220-011-9261-5

    Article  MathSciNet  MATH  Google Scholar 

  30. Menne, U.: Weakly differentiable functions on varifolds. Indiana Univ. Math. J. 65(3), 977–1088 (2016). https://doi.org/10.1512/iumj.2016.65.5829

    Article  MathSciNet  MATH  Google Scholar 

  31. Menne, U.: Sobolev functions on varifolds. Proc. Lond. Math. Soc. (3) 113(6), 725–774 (2016). https://doi.org/10.1112/plms/pdw023

    Article  MathSciNet  MATH  Google Scholar 

  32. Menne, U.: Pointwise differentiability of higher order for distributions (2018). arXiv:1803.10855v1

  33. Michael, J.H., Simon, L.M.: Sobolev and mean-value inequalities on generalized submanifolds of \(R^{n}\). Comm. Pure Appl. Math. 26, 361–379 (1973). https://doi.org/10.1002/cpa.3160260305

    Article  MathSciNet  MATH  Google Scholar 

  34. O’Neil, R.: Convolution operators and \(L(p,\, q)\) spaces. Duke Math. J. 30, 129–142 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rešetnjak, J.G.: Generalized derivatives and differentiability almost everywhere. Math. USSR-Sb. 4, 293–302 (1968). https://doi.org/10.1070/SM1968v004n03ABEH002799

    Article  Google Scholar 

  36. Reshetnyak, Y.G.: Generalized derivatives and differentiability almost everywhere. (Russian). Mat. Sb. (N.S.) 75(117), 323–334 (1968)

    MathSciNet  Google Scholar 

  37. Santilli, M.: Rectifiability and approximate differentiability of higher order for sets. Indiana Univ. Math. J. (2017). To appear, available at arXiv:1701.07286v2

  38. Schätzle, R.: Quadratic tilt-excess decay and strong maximum principle for varifolds. Ann. Sc. Norm. Super. Pisa. Cl. Sci. (5) 3(1), 171–231 (2004)

    MathSciNet  MATH  Google Scholar 

  39. Schätzle, R.: Lower semicontinuity of the Willmore functional for currents. J. Differential Geom. 81(2), 437–456 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)

    Google Scholar 

  41. Stein, E.M.: Editor’s note: the differentiability of functions in \({ R}^{n}\). Ann. of Math. (2) 113(2), 383–385 (1981)

    MathSciNet  MATH  Google Scholar 

  42. Solomon, B., White, B.: A strong maximum principle for varifolds that are stationary with respect to even parametric elliptic functionals. Indiana Univ. Math. J. 38(3), 683–691 (1989). https://doi.org/10.1512/iumj.1989.38.38032

    Article  MathSciNet  MATH  Google Scholar 

  43. Trudinger, N.S.: On the twice differentiability of viscosity solutions of nonlinear elliptic equations. Bull. Austral. Math. Soc. 39(3), 443–447 (1989). https://doi.org/10.1017/S0004972700003361

    Article  MathSciNet  MATH  Google Scholar 

  44. Weil, C.E.: The Peano notion of higher order differentiation. Math. Japon. 42(3), 587–600 (1995)

    MathSciNet  MATH  Google Scholar 

  45. Whitney, H.: On totally differentiable and smooth functions. Pacific J. Math. 1, 143–159 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  46. White, B.: The maximum principle for minimal varieties of arbitrary codimension. Comm. Anal. Geom. 18(3), 421–432 (2010). https://doi.org/10.4310/CAG.2010.v18.n3.a1

    Article  MathSciNet  MATH  Google Scholar 

  47. Wickramasekera, N.: A general regularity theory for stable codimension 1 integral varifolds. Ann. of Math. (2) 179(3), 843–1007 (2014). https://doi.org/10.4007/annals.2014.179.3.2

    Article  MathSciNet  MATH  Google Scholar 

  48. Wickramasekera, N.: A sharp strong maximum principle and a sharp unique continuation theorem for singular minimal hypersurfaces. Calc. Var. Partial Differential Equations 51(3–4), 799–812 (2014). https://doi.org/10.1007/s00526-013-0695-4

    Article  MathSciNet  MATH  Google Scholar 

  49. Zibman, I.B.: Some characterizations of the \(n\)-dimensional Peano derivative. Studia Math. 63(1), 89–110 (1978). https://doi.org/10.4064/sm-63-1-89-110

    Article  MathSciNet  MATH  Google Scholar 

  50. Ziemer, W.P.: Weakly Differentiable Functions, volume 120 of Graduate Texts in Mathematics. Springer, New York (1989). Sobolev spaces and functions of bounded variation. https://doi.org/10.1007/978-1-4612-1015-3

Download references

Acknowledgements

The author would like to thank Mario Santilli for reading part of the manuscript and for bringing a series of papers of Isakov to his attention, Dr. Sławomir Kolasiński for helping him to become acquainted with some of these results available only in Russian, and Dr. Yangqin Fang for pointing him to [11]. The initial version of this paper (see https://arxiv.org/abs/1603.08587v1) was written while the author worked at the Max Planck Institute for Gravitational Physics (Albert Einstein Institute) and the University of Potsdam. The subsequent revision was made while the author worked at the University of Leipzig and the Max Planck Institute for Mathematics in the Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Menne.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Items employed from Federer’s treatise

A Items employed from Federer’s treatise

For the convenience of the reader, Table 1 provides a brief list of the results employed from [14]. Items which merely provide background are not listed.

Table 1 Items employed from [14]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menne, U. Pointwise differentiability of higher order for sets. Ann Glob Anal Geom 55, 591–621 (2019). https://doi.org/10.1007/s10455-018-9642-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-018-9642-0

Keywords

Mathematics Subject Classification

Navigation