Skip to main content
Log in

Kähler structures on spaces of framed curves

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We consider the space \({\mathcal {M}}\) of Euclidean similarity classes of framed loops in \({\mathbb {R}}^3\). Framed loop space is shown to be an infinite-dimensional Kähler manifold by identifying it with a complex Grassmannian. We show that the space of isometrically immersed loops studied by Millson and Zombro is realized as the symplectic reduction of \({\mathcal {M}}\) by the action of the based loop group of the circle, giving a smooth version of a result of Hausmann and Knutson on polygon space. The identification with a Grassmannian allows us to describe the geodesics of \(\mathcal {M}\) explicitly. Using this description, we show that \({\mathcal {M}}\) and its quotient by the reparameterization group are nonnegatively curved. We also show that the planar loop space studied by Younes, Michor, Shah and Mumford in the context of computer vision embeds in \({\mathcal {M}}\) as a totally geodesic, Lagrangian submanifold. The action of the reparameterization group on \({\mathcal {M}}\) is shown to be Hamiltonian, and this is used to characterize the critical points of the weighted total twist functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arnol’d, V.I.: The geometry of spherical curves and the algebra of quaternions. Russ. Math. Surv. 50(1), 1–68 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauer, M., Bruveris, M., Marsland, S., Michor, P.W.: Constructing reparameterization invariant metrics on spaces of plane curves. Differ. Geom. Appl. 34, 139–165 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bishop, R.L.: There is more than one way to frame a curve. Am. Math. Mon. 82(3), 246–251 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brylinski, J.-L.: Loop Spaces, Characteristic Classes and Geometric Quantization, vol. 107. Springer Science & Business Media, Berlin (2007)

    MATH  Google Scholar 

  5. Carroll, D., Kse, E., Sterling, I.: Improving Frenet’s frame using Bishop’s frame (2013). arXiv preprint arXiv:1311.5857

  6. Dennis, M.R., Hannay, J.H.: Geometry of Călugăreanu’s theorem. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 461(2062), 3245–3254 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gel’fand, I.M., Robert, A.M., Shapiro, Z.Y.: Representations of the rotation and Lorentz groups and their applications. Macmillan, New York (1963)

  9. Grinevich, P.G., Schmidt, M.U.: Closed curves in \({{\mathbb{R}}^3}\): a characterization in terms of curvature and torsion, the Hasimoto map and periodic solutions of the filament equation. arXiv preprint arXiv:dg-ga/9703020 (1997)

  10. Hamilton, R.S.: The inverse function theorem of Nash and Moser. Am. Math. Soc. 7(1), 65–222 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hanson, A.J.: Constrained optimal framings of curves and surfaces using quaternion Gauss maps. In: Visualization’98. Proceedings, pp. 375–382. IEEE (1998)

  12. Hanson, A.J.: Visualizing quaternions. Morgan Kaufmann, San Francisco, CA (2006)

  13. Hausmann, J.-C., Knutson, A.: Polygon spaces and Grassmannians. Enseign. Math. 43(1/2), 173–198 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Howard, B., Manon, C., Millson, J.: The toric geometry of triangulated polygons in Euclidean space (2008). arXiv preprint arXiv:0810.1352

  15. Kapovich, M., Millson, J.: The symplectic geometry of polygons in Euclidean space. J. Differ. Geom. 44(3), 479–513 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kurtek, S., Klassen, E., Gore, J.C., Ding, Z., Srivastava, A.: Elastic geodesic paths in shape space of parameterized surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1717–1730 (2012)

    Article  Google Scholar 

  17. Harms, P., Mennucci, A.C.G.: Geodesics in infinite dimensional Stiefel and Grassmann manifolds. C. R. Math. 350(15), 773–776 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hwang, C.C.: A differential-geometric criterion for a space curve to be closed. Proc. Am. Math. Soc. 83(2), 357–361 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Le Brigant, A., Arnaudon, M., Barbaresco, F.: Reparameterization invariant metric on the space of curves. In: International Conference on Networked Geometric Science of Information, p. 140. Springer International Publishing (2015)

  20. Marsden, J., Weinstein, A.: Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids. Physica D 7(1), 305–323 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Michor, P.W., Mumford, D.: An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23(1), 74–113 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Millson, J.J., Zombro, B.: A Kähler structure on the moduli space of isometric maps of a circle into Euclidean space. Invent. Math. 123(1), 35–59 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mio, W., Srivastava, A., Joshi, S.: On shape of plane elastic curves. Int. J. Comput. Vis. 73(3), 307–324 (2007)

    Article  Google Scholar 

  24. Needham, T.R.: Grassmannian geometry of framed curve spaces. Ph.D. dissertation, University of Georgia (2016)

  25. Neretin, Y.A.: On Jordan angles and the triangle inequality in Grassmann manifolds. Geom. Dedicata 86(1–3), 81–91 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13(4), 459–469 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  27. Srivastava, A., Turaga, P., Kurtek, S.: On advances in differential-geometric approaches for 2D and 3D shape analyses and activity recognition. Image Vis. Comput. 30(6), 398–416 (2012)

    Article  Google Scholar 

  28. Wang, W., Jüttler, B., Zheng, D., Liu, Y.: Computation of rotation minimizing frames. ACM Trans. Graph. (TOG) 27(1), 2 (2008)

    Google Scholar 

  29. Whitney, H.: On regular closed curves in the plane. Compos. Math. 4, 276–284 (1937)

    MathSciNet  MATH  Google Scholar 

  30. Younes, L., Michor, P.W., Shah, J., Mumford, D.: A metric on shape space with explicit geodesics. Rend. Lincei-Mat. Appl. 19(1), 25–57 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Most of the work in this paper was part of my Phd. dissertation. I am extremely grateful to my advisor Jason Cantarella for his guidance in developing these ideas. This work would not have been possible without his guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Needham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Needham, T. Kähler structures on spaces of framed curves. Ann Glob Anal Geom 54, 123–153 (2018). https://doi.org/10.1007/s10455-018-9595-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-018-9595-3

Keywords

Navigation