Skip to main content
Log in

On homothetic balanced metrics

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this article, we study the set of balanced metrics given in Donaldson’s terminology (J. Diff. Geometry 59:479–522, 2001) on a compact complex manifold M which are homothetic to a given balanced one. This question is related to various properties of the Tian-Yau-Zelditch approximation theorem for Kähler metrics. We prove that this set is finite when M admits a non-positive Kähler–Einstein metric, in the case of non-homogenous toric Kähler-Einstein manifolds of dimension ≤ 4 and in the case of the constant scalar curvature metrics found in Arezzo and Pacard (Acta. Math. 196(2):179–228, 2006; Ann. Math. 170(2):685–738, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arezzo C., Loi A.: Quantization of Kähler manifolds and the asymptotic expansion of Tian–Yau–Zelditch. J. Geom. Phys. 47, 87–99 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Arezzo C., Loi A.: Moment maps, scalar curvature and quantization of Kähler manifolds. Comm. Math. Phys. 246, 543–549 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arezzo C., Pacard F.: Blowing up and Desingularizing Kähler orbifolds with constant scalar curvature. Acta Math. 196(2), 179–228 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arezzo C., Pacard F.: Blowing up Kähler manifolds with constant scalar curvature II. Ann. Math. 170(2), 685–738 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Audin, M.: Torus actions on symplectic manifolds, Progress in Mathematics 93, Birkhaeuser (2000)

  6. Batyrev V.V., Selivanova E.N.: Einstein-Kähler metrics on symmetric toric Fano manifolds. J. Reine Angew. Math. 512, 225–236 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cahen M., Gutt S., Rawnsley J.H.: Quantization of Kähler manifolds I: geometric interpretation of Berezin’s quantization. J. Geom. Phys. 7, 45–62 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cahen M., Gutt S., Rawnsley J.H.: Quantization of Kähler manifolds II. Trans. Amer. Math. Soc. 337, 73–98 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cahen M., Gutt S., Rawnsley J.H.: Quantization of Kähler manifolds III. Lett. Math. Phys. 30, 291–305 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cahen M., Gutt S., Rawnsley J.H.: Quantization of Kähler manifolds IV. Lett. Math. Phys. 34, 159–168 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Calabi E.: Isometric imbeddings of complex manifolds. Ann. Math. 58, 1–23 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen X.Z., Tian G.: Geometry of Kähler metrics and Foliations by Holomorphic Discs. Publ. Math. Inst. Hautes Études Sci. No. 107(3), 1–107 (2008)

    MATH  Google Scholar 

  13. Della Vedova, A., Zuddas, F.: Scalar curvature and asymptotic Chow stability of projective bundles and blowups, to appear in Trans. AMS

  14. Donaldson S.: Scalar curvature and projective embeddings, I. J. Differential Geom. 59, 479–522 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Fine J.: Calabi flow and projective embeddings. J. Differential Geom. 84(3), 489–523 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Fulton W.: Introduction to toric varieties. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  17. Futaki A.: Asymptotic Chow semistability and integral invariants. Internat. J. Math. 15(9), 967–979 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Futaki, A., Ono, H., Sano, Y.: Hilbert series and obstructions to asymptotic semistability, arXiv:0811.1315 (2008)

  19. Gauduchon, P.: Calabi’s extremal Kähler metrics: an elementary introduction, to appear

  20. Ji S.: Inequality for distortion function of invertible sheaves on Abelian varieties. Duke Math. J. 58, 657–667 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hulin D.: Kähler-Einstein metrics and projective embeddings. J. Geom. Anal. 10, 525–528 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kempf, G.R.: Metrics on invertible sheaves on abelian varieties, Topics in algebraic geometry (Guanajuato) (1989)

  23. Kobayashi S., Nomizu K.: Foundations of differential geometry vol. II. John Wiley and Sons Inc., New York (1967)

    Google Scholar 

  24. Loi A.: The Tian–Yau–Zelditch asymptotic expansion for real analytic Kähler metrics. Int. J. Geom. Methods Mod. Phys. 1, 253–263 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Loi A.: A Laplace integral, the T–Y–Z expansion and Berezin’s transform on a Kaehler manifold. Int. J. Geom. Methods Mod. Phys. 2, 359–371 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Loi A.: Regular quantizations and covering maps. Geom. Dedicata 123, 73–78 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Loi A.: Calabi’s diastasis function for Hermitian symmetric spaces. Differential Geom. Appl. 24, 311–319 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, C.-J., Lu, Z.: Generalized asymptotic expansions of Tian–Yau–Zelditch, arXiv:0909.4591

  29. Lu Z.: On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch. Amer. J. Math. 122(2), 235–273 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Lu Z., Tian G.: The log term of Szegö Kernel. Duke Math. J. 125, 351–387 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mabuchi T.: An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds. I. Invent. Math. 159, 225–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Matsushima Y.: Sur la structure du groupe d’homeomorphismes d’une certaine variété kahlérienne. Nagoya Math. J. 11, 145–150 (1957)

    MathSciNet  MATH  Google Scholar 

  33. Ono, H., Sano, Y., Yotsutani, N.: An example of asymptotically Chow unstable manifold with constant scalar curvature. arXiv:0906.3836v1

  34. Rawnsley J.H.: Coherent states and Kähler manifolds. Q. J. Math., 28(4), 403–415 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ruan W.D.: Canonical coordinates and Bergmann metrics. Comm. Anal. and Geom. 6(3), 589–631 (1998)

    MathSciNet  MATH  Google Scholar 

  36. Tian G.: On a set of polarized Kähler metrics on algebraic manifolds. J. Differential Geom. 32, 99–130 (1990)

    MathSciNet  MATH  Google Scholar 

  37. Xu, H.: A closed formula for the asymptotic expansion of the Bergman kernel, arXiv.1103.3060v1

  38. Xu, H.: An explicit formula for the Berezin star product, arXiv.1103.4175v1.

  39. Zelditch S.: Szegö Kernels and a theorem of Tian. Internat. Math. Res. Notices 6, 317–331 (1998)

    Article  MathSciNet  Google Scholar 

  40. Zhang S.: Heights and reductions of semi-stable varieties. Compos. Math. 104, 77–105 (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Arezzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arezzo, C., Loi, A. & Zuddas, F. On homothetic balanced metrics. Ann Glob Anal Geom 41, 473–491 (2012). https://doi.org/10.1007/s10455-011-9295-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-011-9295-8

Keywords

Mathematics Subject Classification (2000)

Navigation