Skip to main content
Log in

Integrability of invariant geodesic flows on n-symmetric spaces

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this article, by modifying the argument shift method, we prove Liouville integrability of geodesic flows of normal metrics (invariant Einstein metrics) on the Ledger–Obata n-symmetric spaces K n/diag(K), where K is a semisimple (respectively, simple) compact Lie group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Besse A.: Einstein Manifolds: A Series of Modern Surveys in Mathematics. Springer, Berlin (1987)

    Google Scholar 

  2. Bolsinov, A.V.: Compatible Poisson brackets on Lie algebras and the completeness of families of functions in involution, Izv. Acad. Nauk SSSR, Ser. Matem. 55(1), 68–92 (1991) (Russian); English transl.: Math. USSR-Izv. 38(1), 69–90 (1992)

  3. Bolsinov, A.V., Jovanović, B.: Integrable geodesic flows on homogeneous spaces. Matem. Sbornik 192(7), 21–40 (2001) (Russian); English transl.: Sb. Mat. 192(7–8), 951–969 (2001)

    Google Scholar 

  4. Bolsinov A.V., Jovanović B.: Non-commutative integrability, moment map and geodesic flows. Ann. Glob. Anal. Geom. 23(4), 305–322 (2003) arXiv: math-ph/0109031

    Article  MATH  Google Scholar 

  5. Bolsinov A.V., Jovanović B.: Complete involutive algebras of functions on cotangent bundles of homogeneous spaces. Math. Z. 246(1–2), 213–236 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brailov, A.V.: Construction of complete integrable geodesic flows on compact symmetric spaces. Izv. Acad. Nauk SSSR, Ser. Matem. 50(2), 661–674 (1986) (Russian); English transl.: Math. USSR-Izv. 50(4), 19–31 (1986)

  7. Butler L.: Integrable geodesic flows with wild first integrals: the case of two-step nilmanifolds. Ergodic Theory Dynam. Systems 23(3), 771–797 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dragović V., Gajić B., Jovanović B.: Singular Manakov flows and geodesic flows of homogeneous spaces of SO(n). Transfom. Groups 14(3), 513–530 (2009) arXiv: 0901.2444

    Article  MATH  Google Scholar 

  9. Ledger A.J., Obata M.: Affine and Riemannian s-manifolds. J. Differential Geom. 2, 451–459 (1968)

    MATH  MathSciNet  Google Scholar 

  10. Magazev, A.A., Shirokov, I.V.: Integration of geodesic flows on homogeneous spaces. The case of a wild Lie group. Teoret. Mat. Fiz. 136(3), 365–379 (2003) (Russian); English transl.: Theoret. Math. Phys. 136(3), 1212–1224 (2003)

  11. Mishchenko, A.S.: Integration of geodesic flows on symmetric spaces. Mat. Zametki 31(2), 257–262 (1982) (Russian); English transl.: Math. Notes 31(1–2), 132–134 (1982)

    Google Scholar 

  12. Mishchenko, A.S., Fomenko, A.T.: Euler equations on finite-dimensional Lie groups. Izv. Acad. Nauk SSSR Ser. Matem. 42(2), 396–415 (1978) (Russian); English transl.: Math. USSR Izv. 12(2), 371–389 (1978)

  13. Mishchenko, A.S., Fomenko, A.T.: Generalized Liouville method of integration of Hamiltonian systems. Funkts. Anal. Prilozh. 12(2), 46–56 (1978) (Russian); English transl.: Funct. Anal. Appl. 12, 113–121 (1978)

  14. Mikityuk, I.V.: On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces. Matem. Sbornik, 129(171)(4), 514–534 (1986) (Russian); English transl.: Math. USSR Sbornik., 57(2), 527–547 (1987)

  15. Mykytyuk I.V., Panasyuk A.: Bi-Poisson structures and integrability of geodesic flows on homogeneous spaces. Transform. Groups 9(3), 289–308 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nekhoroshev, N.N.: Action-angle variables and their generalization. Tr. Mosk. Mat. Obs. 26, 181–198 (1972) (Russian); English transl.: Trans. Moscow Math. Soc. 26, 180–198 (1972)

  17. Nikonorov, Yu.G.: Invariant Einstein metrics on the Ledger–Obata Spaces. Algebra i Analiz. 14(3), (2002) (Russian); English transl.: St. Petersburg Math. J. 14(3), 487–497 (2002)

  18. Panasyuk, A.: Projection of Jordan bi-Poisson structures that are Kronecker, diagonal actions and the classical Gaudin systems. J. Geom. Phys. 47, 379–397 (2003); Erratum: J. Geom. Phys. 49, 116–117 (2004)

  19. Panyushev D.I., Yakimova O.S.: The argument shift method and maximal commutative subalgebras of Poisson algebras. Math. Res. Lett. 15(2), 239–249 (2008) arXiv: math/0702583

    MATH  MathSciNet  Google Scholar 

  20. Sadetov S.T.: A proof of the Mishchenko-Fomenko conjecture (1981). Dokl. Akad. Nauk. 397(6), 751–754 (2004) (Russian)

    MathSciNet  Google Scholar 

  21. Thimm A.: Integrable geodesic flows on homogeneous spaces. Ergodic Theory Dynam. Systems 1, 495–517 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wang M., Ziller W.: On normal homogeneous Einstein manifolds. Ann. Sci. École Norm. Sup. 18(4), 563–633 (1985)

    MATH  MathSciNet  Google Scholar 

  23. Zung N.T.: Torus actions and integrable systems. In: Bolsinov, A.V., Fomenko, A.T., Oshemkov, A.A. (eds) Topological Methods in the Theory of Integrable Systems, pp. 289–328. Cambridge Scientific Publishers, Cambridge (2006) arXiv: math.DS/0407455

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Božidar Jovanović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jovanović, B. Integrability of invariant geodesic flows on n-symmetric spaces. Ann Glob Anal Geom 38, 305–316 (2010). https://doi.org/10.1007/s10455-010-9216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-010-9216-2

Keywords

Mathematics Subject Classification (2000)

Navigation