Skip to main content
Log in

When are the tangent sphere bundles of a Riemannian manifold η-Einstein?

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We study the geometry of a tangent sphere bundle of a Riemannian manifold (M, g). Let M be an n-dimensional Riemannian manifold and T r M be the tangent bundle of M of constant radius r. The main theorem is that T r M equipped with the standard contact metric structure is η-Einstein if and only if M is a space of constant sectional curvature \({\frac{1}{r^2}}\) or \({\frac{n-2}{r^2}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics, 203. Birkhäuser, Boston (2002)

  2. Boeckx E.: When are the tangent sphere bundles of a Riemannian manifold reducible?. Trans. Amer. Math. Soc. 355, 2885–2903 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boeckx E., Vanhecke L.: Unit tangent sphere bundles with constant scalar curvature. Czechoslovak Math. J. 51, 523–544 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Calvaruso G., Perrone D.: H-contact unit tangent sphere bundles. Rocky Mountain J. Math. 37, 207–219 (2000)

    MathSciNet  Google Scholar 

  5. Chai Y.D., Chun S.H., Park J.H., Sekigawa K.: Remarks on η-Einstein unit tangent bundles. Monatsh. Math. 155(1), 31–42 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen B.-Y., Vanhecke L.: Differential geometry of geodesic spheres. J. Reine. Angew. Math. 325, 28–67 (1981)

    MATH  MathSciNet  Google Scholar 

  7. Chun, S.H., Park, J.H., Sekigawa, K.: Remarks on η-Einstein tangent sphere bundles of radius r. (preprint)

  8. Kowalski O., Sekizawa M.: On tangent sphere bundles with small and large constant radius. Ann. Global Anal. Geom. 18, 207–219 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kowalski O., Sekizawa M.: On the scalar curvature of tangent sphere bundles with arbitrary constant radius. Bull. Greek Math. Soc. 44, 17–30 (2000)

    MATH  MathSciNet  Google Scholar 

  10. Park, J.H., Sekigawa, K.: Notes on tangent sphere bundles of constant radii. J. Korean Math. Soc. (accepted)

  11. Sekizawa M.: Curvatures of tangent bundles with Cheeger-Gromoll metrics. Tokyo J. Math. 14, 407–417 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Yano K.: Differential geometry on complex and almost complex spaces. Pergamon Press, New york (1965)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Park.

Additional information

Communicated by: O. Kowalski (Prague).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.H., Sekigawa, K. When are the tangent sphere bundles of a Riemannian manifold η-Einstein?. Ann Glob Anal Geom 36, 275–284 (2009). https://doi.org/10.1007/s10455-009-9160-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-009-9160-1

Keywords

Mathematics Subject Classification (2000)

Navigation