Skip to main content
Log in

Major food web properties of two sandy beaches with contrasting morphodynamics, and effects on the stability

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

We determined major structural properties influencing the food webs of two sandy beaches with contrasting morphodynamics in the Atlantic coast of Uruguay: reflective (narrow and steep) and dissipative beaches (wide and flat). Furthermore, we evaluated how these characteristics could influence the stability of the local food webs. To this end, we examined the correlation of several food web properties with different ecosystem types (including freshwater habitats, estuary, marine, and terrestrial environments) using a principal components analysis. Sandy beach food web components included detritus, phytoplankton, zooplankton, benthic invertebrates, fishes, and seabirds. Our results revealed that the dissipative beach presented higher trophic levels, a higher number of trophic species, more links per species, as well as a higher proportion of intermediate trophic species, but lower connectance and proportion of omnivorous species than the reflective beach. The variation in the food web properties was explained by two principal components. Sandy beach food webs contribute mainly to one dimension of the principal components analysis that was determined by the number of trophic species, links per species, the trophic similarity, and the characteristic path length. We suggest that species and link characteristics, such as predominance of scavengers and detritivorous, the relatively high connectance and the short path length are drivers in the food web structure and may play a role in the community dynamic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Baird D, Ulanowicz RE (1989) The seasonal dynamics of the Chesapeake Bay ecosystem. Ecol Monogr 59:329–364

    Article  Google Scholar 

  • Bergamino L, Lercari D, Defeo O (2011) Food web structure of sandy beaches: temporal and spatial variation using stable isotope analysis. Estuar Coast Shelf Sci 91:536–543. doi:10.1016/j.ecss.2010.12.007

    Article  CAS  Google Scholar 

  • Camacho J, Guimerà R, Amaral LAN (2002) Robust patterns in food web structure. Phys Rev Lett 88:228102

    Article  PubMed  Google Scholar 

  • Christensen V, Walters C (2004) Ecopath with Ecosim: methods, capabilities and limitations. Ecol Model 172:109–139

    Article  Google Scholar 

  • Christian RR, Luczkovich JJ (1999) Organizing and understanding a winter’s seagrass foodweb network through effective trophic levels. Ecol Model 117:99–124

    Article  Google Scholar 

  • Cohen JE, Briand F, Newman CM (1990) Community food webs: data and theory. Springer, Berlin

    Book  Google Scholar 

  • Colombini I, Brilli M, Fallaci M, Gagnarli E, Chelazzi L (2011) Food webs of a sandy beach macroinvertebrate community using stable isotopes analysis. Acta Oecol 37:422–432. doi:10.1016/j.actao.2011.05.010

    Article  Google Scholar 

  • Defeo O, Gómez J (2005) Morphodynamics and habitat safety in sandy beaches: life-history adaptations in a supralittoral amphipod. Mar Ecol Prog Ser 293:143–153

    Article  Google Scholar 

  • Defeo O, McLachlan A (2005) Patterns, processes and regulatory mechanisms in sandy beach macrofauna: a multiscale analysis. Mar Ecol Prog Ser 295:1–20

    Article  Google Scholar 

  • Defeo O, Jaramillo E, Lyonnet A (1992) Community structure and intertidal zonation of the macroinfauna in the Atlantic coast of Uruguay. J Coast Res 8:830–839

    Google Scholar 

  • Defeo O, Brazeiro A, de Alava A, Riestra G (1997) Is sandy beach macrofauna only physically controlled? Role of substrate and competition in isopods. Estuar Coast Shelf Sci 45:453–462

    Article  Google Scholar 

  • Defeo O, Gómez J, Lercari D (2001) Testing the swash exclusion hypothesis in sandy beach populations: the mole crab Emerita brasiliensis in Uruguay. Mar Ecol Prog Ser 212:159–170. doi:10.3354/meps212159

    Article  Google Scholar 

  • Dugan JE, Jaramillo E, Hubbard DM, Contreras H, Duarte C (2004) Competitive interactions in macroinfaunal animals of exposed sandy beaches. Oecologia 139:630–640. doi:10.1007/s00442-004-1547-x

    Article  PubMed  Google Scholar 

  • Dunne JA (2009) Food webs. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer, New York, pp 3661–3682

    Chapter  Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5:558–567

    Article  Google Scholar 

  • Dunne J, Williams RJ, Martinez ND (2004) Network structure and robustness of marine food webs. Mar Ecol Prog Ser 273:291–302. doi:10.3354/meps273291

    Article  Google Scholar 

  • Fussman GF, Heber G (2002) Food web complexity and chaotic population dynamics. Ecol Lett 5:394–401

    Article  Google Scholar 

  • Goldwasser L, Roughgarden JA (1993) Construction of a large Caribbean food web. Ecology 74:1216–1233

    Article  Google Scholar 

  • Gómez J, Defeo O (1999) Life history of the sandhopper Pseudorchestoidea brasiliensis (Amphipoda) in sandy beaches with contrasting morphodynamics. Mar Ecol Prog Ser 182:209–220

    Article  Google Scholar 

  • Hall SJ, Raffaelli D (1991) Food-web patterns: lessons from a species-rich web. J Anim Ecol 60:823–842

    Article  Google Scholar 

  • Havens K (1992) Scale and structure in natural food webs. Science 257:1107–1109

    Article  PubMed  CAS  Google Scholar 

  • Heymans JJ, McLachlan A (1996) Carbon budget and network analysis of a high-energy beach/surf-zone ecosystem. Estuar Coast Shelf Sci 43:485–505

    Article  CAS  Google Scholar 

  • Husson F, Josse J, Le S, Mazet J (2011) FactoMineR: multivariate exploratory data analysis and data mining with R. R package version 1.16. http://CRAN.R-project.org/package=FactoMineR

  • Incera M, Lastra M, López J (2006) Effects of swash climate and food availability on sandy beach macrofauna along the NW coast of the Iberian Peninsula. Mar Ecol Prog Ser 314:25–33. doi:10.3354/meps314025

    Article  Google Scholar 

  • Kondoh M (2003) Foraging adaptation and the relationship between food-web complexity and stability. Science 299:1388–1391

    Article  PubMed  CAS  Google Scholar 

  • Lercari D, Defeo O (2006) Large-scale diversity and abundance trends in sandy beach macrofauna along full gradients of salinity and morphodynamics. Estuar Coast Shelf Sci 68:27–35. doi:10.1016/j.ecss.2005.12.017

    Article  Google Scholar 

  • Lercari D, Bergamino L, Defeo O (2010) Trophic models in sandy beaches with contrasting morphodynamics: comparing ecosystem structure and biomass flow. Ecol Model 221:2751–2759. doi:10.1016/j.ecolmodel.2010.08.027

    Article  Google Scholar 

  • Martinez ND (1991) Artifacts or attributes? Effects of resolution on the Little Rock Lake food web. Ecol Monogr 61:367–392

    Article  Google Scholar 

  • May RT (1973) Stability and complexity in model ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • May RM (2006) Network structure and the biology of populations. Trends Ecol Evol 21:394–399. doi:10.1016/j.tree.2006.03.013

    Article  PubMed  Google Scholar 

  • McCann K, Hastings A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 395:794–798

    Article  CAS  Google Scholar 

  • McLachlan A, Brown AC (2006) The ecology of sandy shores. Academic, Burlington

    Google Scholar 

  • Montoya JM, Solé RV (2003) Topological properties of food webs: from real data to community assembly models. Oikos 102:614–622

    Article  Google Scholar 

  • Neutel AM, Heesterbeek JAP, de Ruiter PC (2002) Stability in real food webs: weak links in long loops. Science 296:1120–1123

    Article  PubMed  CAS  Google Scholar 

  • Paetzold A, Lee M, Post DM (2008) Marine resource flows to terrestrial arthropod predators on a temperate island: the role of subsidies between systems of similar productivity. Oecologia 157:653–659. doi:10.1007/s00442-008-1098-7

    Article  PubMed  Google Scholar 

  • Pimm SL (2002) Food webs. Chapman and Hall, New York

    Google Scholar 

  • Polis GA (1991) Complex desert food webs: an empirical critique of food web theory. Am Nat 138:123–155

    Article  Google Scholar 

  • Polovina JJ (1984) Models of coral reef ecosystems. I: the ECOPATH model and its application to French Frigate Shoal. Coral Reefs 3:1–11

    Article  Google Scholar 

  • Rodil IF, Compton TJ, Lastra M (2012) Exploring macroinvertebrate species distributions at regional and local scales across a sandy beach geographic continuum. PLoS ONE 7(6):e39609. doi:10.1371/journal.pone.0039609

    Article  PubMed  CAS  Google Scholar 

  • Romanuk TN, Jackson LJ, Post JR, McCauley E, Martinez ND (2006) The structure of food webs along river networks. Ecography 29:3–10. doi:10.1111/j.2005.0906-7590.04181.x

    Article  Google Scholar 

  • Sánchez-Carmona R, Encina L, Rodríguez-Ruíz L, Rodríguez-Sánchez L, Granado-Lorencio L (2012) Food web structure in Mediterranean streams: exploring stabilizing forces in these ecosystems. Aquat Ecol 46:311–324. doi:10.1007/s10452-012-9400-5

    Article  Google Scholar 

  • Schlacher TA, Schoeman DS, Dugan J, Lastra M, Jones A, Scapini F, McLachlan A (2008) Sandy beach ecosystems: key features, sampling issues, management challenges and climate change impacts. Mar Ecol 29:70–90

    Article  Google Scholar 

  • Short AD (ed) (1999) Handbook of beach and shoreface morphodynamics. Wiley, London

    Google Scholar 

  • Shorthouse DP (2010) SimpleMappr, an online tool to produce publication-quality point maps. Retrieved from http://www.simplemappr.net. Accessed 08 Apr 13

  • Stouffer DB, Camacho J, Guimerá R, Ng CA, Amaral LAN (2005) Quantitative patterns in the structure of model and empirical food webs. Ecology 86:1301–1311

    Article  Google Scholar 

  • Vermaat JE, Dunne JA, Gilbert AJ (2009) Major dimensions in foodweb structure properties. Ecology 90:278–282

    Article  PubMed  Google Scholar 

  • Warren PH (1989) Spatial and temporal variation in the structure of a freshwater food web. Oikos 55:299–311

    Article  Google Scholar 

  • Williams RJ (2010) Network3D software. Microsoft Research, Cambridge

    Google Scholar 

  • Williams RJ, Martinez ND (2000) Simple rules yield complex food web. Nature 404:180–183

    Article  PubMed  CAS  Google Scholar 

  • Williams RJ, Martinez ND (2004) Limits to trophic levels and omnivory in complex food webs: theory and data. Am Nat 163:458–468. doi:10.86/381964

    Article  PubMed  Google Scholar 

  • Williams RJ, Martinez ND (2008) Success and its limits amongstructural models of complex food webs. J Anim Ecol 77:512–519. doi:10.1111/j.1365-2656.2008.01362.x

    Article  PubMed  Google Scholar 

  • Williams RJ, Berlow EL, Dunne JA, Barabási AL, Martinez ND (2002) Two degrees of separation in complex food webs. Proc Natl Acad Sci 99:12913–12916. doi:10.1073pnas.192448799

    Article  PubMed  CAS  Google Scholar 

  • Yodzis P (1998) Local trophodynamics and the interaction of marine mammals and fisheries in the Benguela ecosystem. J Anim Ecol 67:635–658

    Article  Google Scholar 

Download references

Acknowledgments

We thank Omar Defeo (Facultad de Ciencias, UNDECIMAR, Uruguay) for his mentorship and friendship through the years. This work was supported by SANDISA IMWEBU grants (L.B). We thank Katherina Schoo and Sydney Moyo for the language editing. We are also grateful to Piet Spaak and an anonymous referee for helpful comments in the manuscript. DL thanks PEDECIBA and ANII. L.B. thanks Jesús Orozco (Rhodes University, South Africa) for his transmission of knowledge and encouragement in a friendly way.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Bergamino.

Additional information

Handling Editor: Piet Spaak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergamino, L., Gómez, J., Barboza, F.R. et al. Major food web properties of two sandy beaches with contrasting morphodynamics, and effects on the stability. Aquat Ecol 47, 253–261 (2013). https://doi.org/10.1007/s10452-013-9440-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-013-9440-5

Keywords

Navigation