Skip to main content
Log in

Fish assemblage of a traditional fishery and the seasonal variations in diet of its most abundant species Wallago attu (Siluriformes: Siluridae) from a tropical floodplain

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

The fish assemblage of a traditional Kata fishery and the stomach contents of Wallago attu were studied over a period of one year from a large floodplain system in Bangladesh. A total of 19 species of fish and 2 species of shrimp were recorded. W. attu (9.7–17.8%), Mystus vittatus (6.0–11.3%), M. aor (5.0–12.1%), Amblypharyngodon mola (4.4–9.3%) and Mastacembelus armatus (3.5–10.5%) dominated the catch. W.␣attu occupied the top position in abundance throughout the year, followed by M. vittatus and M. aor. Bagridae, Siluridae and Cyprinidae were three major families that contributed respectively 21.0, 17.4 and 16.1% of the total catch. Considerable seasonality was observed in the abundance of different fishes. A total of 14 different prey items were recorded, belonging to three major groups (fish, prawn and plant matters). The fish fed on at least eight species of small fishes (A. mola, M. vittatus, M. cavasius, Puntius stigma, P. ticto, Puntius sp., Glossogobius guris, and Heteropneustes fossilis) and some other unidentified small fishes. Other major prey items were small prawn, fish and prawn remains, and macroalgae. A. mola was the most important food item, contributing 23.7% of the total amount of diet by weight and 19.9% by frequency of occurrence. A. mola was followed by unidentified small prawn (13.7%), M. vittatus (13.1%), and unidentified small fishes (8.8%) by weight and by unidentified small fishes (15.9%), fish remains (12.5%), and M.␣vittatus (12.3%) by occurrence. Of the major diet categories, fish contributed 74.3% of the total diet by weight and 80.9% by occurrence, prawn contributed 18.5% by weight and 11.0% by occurrence and plants contributed 7.2% by weight and 8.1% by occurrence. A. mola and small shrimps were positively selected by W. attu. We concluded that W. attu is a piscivorous predator with potential impacts on prey fish communities; we also hypothesized that a specialized food-web based on the Kata fishery exists in and around the Katas which is of particular ecological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed M.S. 2002. The biological basis of fisheries management in the floodplain of River Tias, Brahmanbaria. Final Project Report, SUFER Project, DFID, UGC, Bangladesh. 120pp.

  • Anwar S., Siddiqui M.S. (1992) Observation on the predation by Mystus seenghala Sykes and Wallago attu Bloch and Schneider of the river Kali in north India. J. Environ. Biol. 13:47–54

    Google Scholar 

  • Beukers-Stewart B.D. and Jones G.P. 2004. The influence of prey abundance on the feeding ecology of two piscivorous species of coral reef fish. J. Exp. Mar. Biol. Ecol. 299: 155–184

    Google Scholar 

  • Bronmark C., Paszkowski C.A., Tonn W.M., Hargeby A. (1995) Predation as a determinant of size structure in populations of crucian carp (Carassius carassius) and tench (Tinca tinca). Ecol. Freshwat. Fish. 4:85–92

    Article  Google Scholar 

  • Caley M.J. 1993. Predation, recruitment and the dynamics of communities of coral reef fish. Mar. Biol. 117: 33–43

    Google Scholar 

  • Connell S.D. 1998. Effects of predators on growth, morality and abundance of a juvenile reef fish: evidence from manipulations of predator and prey abundance. Mar. Ecol. Prog. Ser. 169: 251–261

    Google Scholar 

  • Dorner H., Wagner A. (2003) Size-dependent predator–prey relationships between perch and their fish prey. J. Fish. Biol. 62:1021–1032

    Article  Google Scholar 

  • Dutta S.P.S. and Malhotra Y.R. 1991. Food and feeding habits of some fishes of Gadigarh stream Jammu. Proc. Nat. Acad. Sci. India. Sec. B Biol. Sci. 61: 163–168

    Google Scholar 

  • Eklov P, Persson L (1995) Species-specific antipredator capacities and prey refuges, interactions between piscivorous perch (Perca fluviatilis) and juvenile perch and roach (Rutilis rutilis). Behav Ecol Sociobiol 37:169–178

    Article  Google Scholar 

  • Findlay C.S., Bert D.G., Zheng L. (2000) Effects of introduced piscivores on native minnow communities in Adirondack lakes. Canad. J. Fish. Aquat. Sci. 57:570–580

    Article  Google Scholar 

  • Fraser D.F., Gilliam J.F. (1992) Nonlethal impacts of predator invasion, facultative suppression of growth and reproduction. Ecology 73:959–970

    Article  Google Scholar 

  • Giri S.S., Sahoo S.K., Sahu B.B., Sahu A.K., Mohanty S.N., Mukhopadhyay P.K., Ayyappan S. (2002) Larval survival and growth in Wallago attu (Bloch and Schneider), effects of light, photoperiod and feeding regimes. Aquaculture 213:151–161

    Article  Google Scholar 

  • Hixon M.A. (1991) Predation as a process structuring coral reef fish communities. In: Sale P.F. (eds), The Ecology of Fishes on Coral Reefs. Academic Press, New York, pp. 475–507

    Google Scholar 

  • Hoggarth D.D., Cowan V.J., Halls A.S., Aeron-Thomas M.A., McGregor J.A., Garaway C.A., Payne A.I., and Welcomme R.L. 1999b. Management guidelines for Asian floodplain river fisheries, Part 2: Summary of DFID research, FAO Fisheries Technical Paper 384/2, Rome, Italy. 117pp.

  • Hoggarth D.D., Cowan V.J., Halls A.S., Aeron-Thomas M.A., McGregor J.A., Garaway C.A., Payne A.I. and Welcomme RL 1999a. Management guidelines for Asian floodplain river fisheries. Part 1. A spatial, hierarchical and integrated strategy for adaptive co-management. FAO Fisheries Technical Paper. No. 384/1. Rome, FAO. 1999. 63p.

  • Hyslop E.J. (1980) Stomach content analysis—a review of methods and their application. J. Fish. Biol. 17:411–429

    Article  Google Scholar 

  • Ivlev V.S. (1961) Experimental Ecology of the Feeding of Fishes. Yale University Press, New Haven, CT

    Google Scholar 

  • Kahilainen K., Lehtonen H. (2003) Piscivory and prey selection of four predator species in a whitefish dominated subarctic lake. J. Fish. Biol. 63:659–672

    Article  Google Scholar 

  • Kartha K.N., Rao K.S. (1991) Vertical distribution of fish in surface and bottom gill nets operated in gandhisagar reservoir. Fish. Tech. 28:96–99

    Google Scholar 

  • L’Abée-Lund J.H., Aass P., Saegrov H. (2002) Long-term variation in piscivory in a brown trout population, effect of changes in available prey organisms. Ecol. Freshwat. Fish. 11:260–269

    Article  Google Scholar 

  • Lammens E.H.R.R. (1999) The central role of fish in lake restoration and management. Hydrobiologia 395/396:191–198

    Article  CAS  Google Scholar 

  • Lathrop R.C., Johnson B.M., Johnson T.B., Vogelsang M.T., Carpenter S.R., Hrabik T.R., Kitchell J.F., Magnuson J.J., Rudstam L.G., Stewart R.S. (2002) Stocking piscivores to improve fishing and water clarity, a synthesis of the Lake Mendota biomanipulation project. Freshwat. Biol. 47:2410–2424

    Article  Google Scholar 

  • Macchi P.J., Cussac V.E., Alonso M.F., Denegri M.A. (1999) Predation relationships between introduced salmonids and the native fish fauna in lakes and reservoirs in northern Patagonia. Ecol. Freshwat. Fish. 8:227–236

    Article  Google Scholar 

  • Menge B.A., Sutherland J.P. (1987) Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am. Nat. 130:730–757

    Article  Google Scholar 

  • Munshi J.S.D., Singh O.N., Singh D.K. (1990) Food and feeding relationships of certain aquatic animals in the Ganga ecosystem. Trop. Ecol. 31:138–144

    Google Scholar 

  • Museth J., Borgstrøm R., Brittain J.E., Herberg I., Naalsund C. (2002) Introduction of the European minnow into a sub-alpine lake, habitat use and long term changes in population dynamics. J. Fish. Biol. 60:1308–1321

    Article  Google Scholar 

  • Museth J., Borgstrom R., Hame T., Holen L.A. (2003) Predation by brown trout, a major mortality factor for sexually mature European minnows. J. Fish. Biol. 62:692–705

    Article  Google Scholar 

  • Nash R.D.M. (1982) The diel behaviour of small demersal fish on soft sediments on the west coast of Scotland using a variety of techniques, with special reference to Lesuerigobious friesii (Pisces, Gobiiae). Mar. Ecol. 3:161–178

    Google Scholar 

  • Olson M.H. (1996) Predator’ –prey interactions in size-structured fish communities, implications of prey growth. Oecologia 108:757–763

    Article  Google Scholar 

  • Osidele O.O., Beck M.B. (2004) Food web modelling for investigating ecosystem behaviour in large reservoirs of the south-eastern United States: lessons from Lake Lanier, Georgia. Ecol. Model 173:129–158

    Article  Google Scholar 

  • Pinnegar J.K., Trenkel V.M., Tidd A.N., Dawson W.A., Du Buit M.H. (2003) Does diet in Celtic sea fishes reflect prey availability? J Fish Biol 63 (Supplement A): 197–212

    Article  Google Scholar 

  • Rahman A.K.A. (1989) Freshwater Fishes of Bangladesh. Zoological Society of Bangladesh. Department of Zoology, University of Dhaka, pp. 364

    Google Scholar 

  • Skov C., Lousdal O., Johansen P.H., Berg S. (2003) Piscivory of 0+ pike (Esox lucius L.) in a small eutrophic lake and its implication for biomanipulation. Hydrobiologia 506–509:481–487

    Article  Google Scholar 

  • Taylor R.J. (1984). Predation. Chapman & Hall, London

    Google Scholar 

  • Tonn W.M., Magnusson J.J. (1982) Patterns in the species composition and richness of fish assemblages in northern Wisconsin lakes. Ecology 63:1149–1166

    Article  Google Scholar 

  • Tonn W.M., Paszkowski C.A., Holopainen I.J. (1992) Piscivory and recruiments, mechanisms structuring prey populations in small lakes. Ecology 73:951–958

    Article  Google Scholar 

  • Tsai Chu-fa, Ali M.Y. (eds), (1989) Openwater Fisheries of Bangladesh. The University Press Limited, Dhaka, 212 pp

    Google Scholar 

  • Turner G.F. (1993) Teleost mating behaviour. In: Pitcher T.J. (eds), Behaviour of Teleost Fishes, 2nd edn. London, Chapman & Hall, pp. 307–331

    Google Scholar 

  • Walters C.J., Juanes F. (1993) Recruitment limitation as a consequence of natura selection for use of restricted feeding habitats and predation risk taking by juvenile fishes. Canad. J. Fish. Aquat. Sci. 50:2058–2070

    Article  Google Scholar 

  • Werner E.E., Gilliam J.F., Hall D.J., Mittelbach G.G. (1983) An experimental test of the effects of predation risk on habitat use in fish. Ecology 64:1540–1548

    Article  Google Scholar 

  • Yang Y.S. (1988) Food resource utilization partitioning of fifteen fish species at Bukit Merah Reservoir, Malaysia. Hydrobiologia 157:143–160

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Shahidul Islam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, M.S., Rahman, M.M., Halder, G.C. et al. Fish assemblage of a traditional fishery and the seasonal variations in diet of its most abundant species Wallago attu (Siluriformes: Siluridae) from a tropical floodplain. Aquat Ecol 40, 263–272 (2006). https://doi.org/10.1007/s10452-005-9023-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-005-9023-1

Keywords

Navigation