Skip to main content
Log in

Surface barriers and symmetry of adsorption and desorption processes

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Adsorption and desorption of hydrocarbons in a realistic model (2496 atoms) of ZSM-5 zeolite (MFI), including an external surface and a reservoir for molecules, have been studied using classical molecular dynamics, with special focus on surface barriers. Different degrees of surface blocking have been modeled according to experimental observations. Using previous molecular dynamics results, from the analysis of adsorption and desorption path lengths, we demonstrate that surface barriers are symmetric, i.e. with equal paths for desorption and adsorption, in agreement with the principle of microscopic reversibility and in contradiction with a model proposed recently. A new thermodynamic analysis confirms the symmetry of adsorption/desorption paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

D:

(Transport or Fickian) diffusivity (cm2s1)

K:

Surface permeance (cm·s1), defined by Flux = k·Δc (‘c’ is concentracion)

ka and kd :

Adsorption and desorption rate constants

K:

Equilibrium constant

µz,g,ads,des µ+ :

Chemical potential (z = surface, g = gas, +  = transition state, ads/des = adsorption, desorption)

F:

Helmholtz free energy

References

  • Binder, T., Krause, B.-C., Krutyeva, M., Huang, J.A., Caro, J., Kärger, J.: Surface permeability on zeolite NaCaA enhanced by layer deposition. Microporous Mesoporous Mater. 146, 151–157 (2011)

    Article  CAS  Google Scholar 

  • Crank, J.: Mathematics of diffusion p. 91–92, p. 56–57. Oxford University Press, London (1956).

  • Dauenhauer, P.J.: Reply to “Comment on ‘On Asymmetric Surface Barriers in MFI Zeolites Revealed by Frequency Response”. J. Phys. Chem. C 119, 29203–29205 (2015)

    Article  CAS  Google Scholar 

  • Fasano, M., Humplik, T., Bevilacqua, A., Tsapatsis, M., Chiavazzo, E., Wang, E.N., Asinari, P.: Interplay between hydrophilicity and surface barriers on water transport in zeolite membranes. Nature Commun. 7, 12762 (2016)

    Article  CAS  Google Scholar 

  • Glavatskiy, K.S., Bhatia, S.K.: Thermodynamic resistance to matter flow at the interface of a porous membrane. Langmuir 32, 3400–3411 (2016)

    Article  CAS  Google Scholar 

  • Gobin, O.C., Reitmeier, S.T., Jentys, A., Lercher, J.A.: Diffusion pathways of benzene, toluene and p-xylene in MFI. Microporous Mesoporous Mater. 125, 3–10 (2009)

    Article  CAS  Google Scholar 

  • Gobin, O.C., Reitmeier, S.J., Jentys, A., Lercher, J.A.: Role of the Surface Modification on the Transport of Hexane Isomers in ZSM-5. J. Phys. Chem. C 115, 1171–1179 (2011)

    Article  CAS  Google Scholar 

  • Gueudré, L., Jolimaîte, E., Bats, N., Dong, W.: Diffusion in zeolites: is surface resistance a critical parameter? Adsorption 16, 17–27 (2010)

    Article  Google Scholar 

  • Hibbe, F., Chmelik, C., Heinke, L., Pramanik, S., Li, J., Ruthven, D.M., Tzoulaki, D., Kärger, J.: The nature of surface barriers on nanoporous solids explored by microimaging of transient guest distributions. J. Am. Chem. Soc. 133, 2804–2807 (2011)

    Article  CAS  Google Scholar 

  • Hibbe, F., Caro, J., Chmelik, C., Huang, A., Kirchner, T., Ruthven, D.M., Valiullin, R., Kärger, J.: Monitoring molecular mass transfer in cation-free nanoporous host-crystals of type AlPO-LTA. J. Am. Chem. Soc. 134, 7725–7732 (2012)

    Article  CAS  Google Scholar 

  • Jentys, A., Tanaka, H., Lercher, J.A.: Surface processes during sorption of aromatic molecules on medium pore Zeolites. J. Phys. Chem. B 109, 2254–2261 (2005)

    Article  CAS  Google Scholar 

  • Kärger, J., Ruthven, D.M., Theodorou, D.N.: Diffusion in nanoporous materials. Wiley - VCH, Weinheim (2012)

    Book  Google Scholar 

  • Kärger, J., Binder, T., Chmelik, C., Hibbe, F., Krautscheid, H., Krishna, R., Weitkamp, J.: Microimaging of transient guest profiles to monitor mass transfer in nanoporous materials. Nat. Mater. 13, 333–343 (2014)

    Article  Google Scholar 

  • Kärger, J., Ruthven, D.M.: Diffusion in nanoporous materials: fundamental principles, insights and challenges. New J. Chem. 40, 4027–4048 (2016)

    Article  Google Scholar 

  • Remi, J.C.S., Lauerer, A., Chmelik, C., Vandendael, I., Terryn, H., Baron, G.V., Denayer, J.F.M., Kärger, J.: The role of crystal diversity in understanding mass transfer in nanoporous materials. Nat. Mater. 15, 401–406 (2015)

    Article  Google Scholar 

  • Reitmeier, S.T., Gobin, O.C., Jentys, A., Lercher, J.A.: Enhancement of sorption processes in the zeolite H-ZSM-5 by postsynthetic surface modification. Angew. Chem. Int. Ed. 48, 533–538 (2009a)

    Article  CAS  Google Scholar 

  • Reitmeier, S.J., Gobin, O.C., Jentys, A., Lercher, J.A.: Influence of postsynthetic surface modifcation on shape selective transport of aromatic molecules in HZSM-5. J. Phys. Chem. C 113, 15355–15363 (2009b)

    Article  CAS  Google Scholar 

  • Ruthven, D.M., Kärger, J.: Comment on “On Asymmetric Surface Barriers in MFI Zeolites Revealed by Frequency Response”. J. Phys. Chem. C 119, 29201–29202 (2015)

    Article  CAS  Google Scholar 

  • Sastre, G., Kärger, J., Ruthven, D.M.: A Molecular Dynamics Study of Diffusion and Surface Permeation of Benzene in Silicalite. J. Phys. Chem. C 122, 7217–7225 (2018)

    Article  CAS  Google Scholar 

  • Sastre, G., Kärger, J., Ruthven, D.M.: Diffusion path reversibility confirms symmetry of surface barriers. J. Phys. Chem. C 123, 19596–19601 (2019)

    Article  CAS  Google Scholar 

  • Teixeira, A.R., Chang, C.-C., Coogan, T., Kendall, R., Fan, W., Dauenhauer, P.J.: Dominance of surface barriers in molecular transport through silicalite-1. J. Phys. Chem. C 117, 25545–25555 (2013)

    Article  CAS  Google Scholar 

  • Teixeira, A.R., Qi, X., Chang, C., Fan, W., Conner, W., Dauenhauer, P.J.: On asymmetric surface barriers in mfi zeolites revealed by frequency response. J. Phys. Chem. C 118, 22166–22180 (2014)

    Article  CAS  Google Scholar 

  • Tolman, R.C.: The principle of microscopic reversibility. Proc. Natl. Acad. Sci. U.S.A. 11, 436–439 (1925)

    Article  CAS  Google Scholar 

  • Tzoulaki, D., Schmidt, W., Wilczok, U., Kärger, J.: Formation of surface barriers on silicalite-1 crystal fragments by residual water vapour as probed with isobutane by interference microscopy. Microporous Mesoporous Mater. 110, 72–76 (2008a)

    Article  CAS  Google Scholar 

  • Tzoulaki, D., Heinke, L., Schmidt, W., Wilczok, U., Kärger, J.: Exploring crystal morphology of nanoporous hosts from transient guest profiles. Angew. Chem. Int. Ed. 47, 3954–3957 (2008b)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J. K. and D.M.R. acknowledge financial support by the Alexander von Humboldt Foundation and the Fonds der Chemischen Industrie. G.S. thanks MICINN of Spain for funding through projects RTI2018-101784-B-I00, RTI2018-101033-B-I00, SEV-2016–0683. G.S. thanks ASIC-UPV for computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to German Sastre or Douglas M. Ruthven.

Ethics declarations

Conflict of interest

We declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The Teixeira et al. model formulated in terms of transition state theory

Appendix: The Teixeira et al. model formulated in terms of transition state theory

See (Fig. 6).

Fig. 6
figure 6

Schematic representation of Teixeira et al. model in terms of transition state theory

Gas Phase: \({\mu }_{g}= {\mu }_{g }^{o}\)+ \(RTln{c}_{g}\)

External Surface: \({\mu }_{1}\,=\, {\mu }_{1 }^{o}\)+\(RTln{c}_{1}\)  = \({\mu }_{g }^{o}\)+ \(RTln{c}_{g}\) (Equilibrium between gas and surface).

c1/cg = \(exp\left[\frac{{\mu }_{g }^{o}-{\mu }_{1 }^{o} }{RT}\right]\)  = K1.

Intra-crystalline: \({\mu }_{z}= {\mu }_{z }^{o}\)+ \(RTln{c}_{z}\)

Ads. Rate =  kac1 = \({k}_{a}{c}_{g }exp\left[\frac{{\mu }_{g }^{o}-{\mu }_{1 }^{o} }{RT}\right]\) Des. Rate =  kdcz.

Trans. State Theory: \({k}_{a}\)= \(\left(\frac{kT}{h}\right)exp\left(\frac{{\mu }_{1}^{0}- {\mu }^{*}}{RT}\right)\) \({k}_{d}\)=\(\left(\frac{kT}{h}\right)exp\left(\frac{{\mu }_{z}^{0}- {\mu }^{*}}{RT}\right)\)

Net Rate = kac1kdcz = \(\left(\frac{kT}{h}\right)exp\left(\frac{- {\mu }^{*}}{RT}\right)\left[{c}_{g}{e}^{\frac{{\mu }_{g}^{o}}{RT}}- {c}_{z}{e}^{\frac{{\mu }_{z}^{o}}{RT}}\right]\) as c1/cg = \(exp\left[\frac{{\mu }_{g }^{o}-{\mu }_{1 }^{o} }{RT}\right]\)

At equilibrium: \(K= \frac{{c}_{z}^{eq}}{{c}_{g}}\) = \(exp\left(\frac{{\mu }_{g}^{o}- {\mu }_{z}^{o}}{RT}\right)\)  = \(exp\left(\frac{-\Delta {F}^{o}}{RT}\right)\)

The final equation is exactly the same as for direct mass transfer between the gas and intra-crystalline phases. The intermediate state (c1, μ1) cancels out because, at equilibrium, c1/cg = exp \(\left[\frac{{\mu }_{g }^{o}-{\mu }_{1 }^{o} }{RT}\right]\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sastre, G., Kärger, J. & Ruthven, D.M. Surface barriers and symmetry of adsorption and desorption processes. Adsorption 27, 777–785 (2021). https://doi.org/10.1007/s10450-020-00260-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-020-00260-1

Keywords

Navigation