Skip to main content
Log in

Facile synthesis of magnetic hydroxyapatite-supported nickel oxide nanocomposite and its dye adsorption characteristics

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

A novel magnetic hydroxyapatite-supported nickel oxide nanocomposite (NiO–HAP@γ-Fe2O3) was successfully prepared using a combination of co-precipitation and wet impregnation methods and was applied to the adsorption of methylene blue from aqueous solution. The presence of HAP, γ-Fe2O3, NiO and all elements in NiO–HAP@γ-Fe2O3 was confirmed by XRD, SEM–EDX and ICP-AES. The structure of the resulting nanocomposite was shown by TEM and SEM–EDX to be rod-shaped, measuring 55.8 ± 16.5 nm in length and 27.1 ± 6.2 nm in width, and on the surface of which was uniformly interspersed with NiO nanoparticles (about 21.4 nm average crystallite size) and γ-Fe2O3 nanoparticles (6.7 ± 2.6 nm in diameter). The novel NiO–HAP@γ-Fe2O3 exhibited a high adsorption rate during the first 20 min and reached an equilibrium within 3 h. The adsorption capacity of NiO–HAP@γ-Fe2O3 was significantly higher than that of its precursors (7.20 mg g−1 vs 0.79–1.31 mg g−1). The superior adsorption performance of the novel nanocomposite, which occurred despite its relatively low surface area, is likely attributable to the synergistic mechanisms facilitated by the presence of mixed metal oxides (NiO and γ-Fe2O3) on the adsorbent as well as by the Lewis acidity and basicity of the components of the adsorbent and the adsorbate. The adsorption kinetics and isotherms were well-fitted by the pseudo-second-order kinetic model and the Langmuir isotherm model, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adhikari, S., Mandal, S., Sarkar, D., Kim, D.-H., Madras, G.: Kinetics and mechanism of dye adsorption on WO3 nanoparticles. Appl. Surf. Sci. 420, 472–482 (2017)

    Article  CAS  Google Scholar 

  • Aghabeygi, S., Kojoori, R.K., Azad, H.V.: Sonosynthesis, characterization and photocatalytic degradation property of nano ZnO/zeolite A. Iran. J. Catal. 6, 275–279 (2016)

    Google Scholar 

  • Ajoudanian, N., Nezamzadeh-Ejhieh, A.: Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin. Mater. Sci. Semicond. Process. 36, 162–169 (2015)

    Article  CAS  Google Scholar 

  • Alkan, M., Demirbaş, Ö, Doğan, M.: Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite. Microporous Mesoporous Mater. 101(3), 388–396 (2007)

    Article  CAS  Google Scholar 

  • Anari-Anaraki, M., Nezamzadeh-Ejhieh, A.: Modification of an Iranian clinoptilolite nano-particles by hexadecyltrimethyl ammonium cationic surfactant and dithizone for removal of Pb(II) from aqueous solution. J. Colloid Interface Sci. 440, 272–281 (2015)

    Article  CAS  Google Scholar 

  • Ayad, M., El-Hefnawy, G., Zaghlol, S.: Facile synthesis of polyaniline nanoparticles; its adsorption behavior. Chem. Eng. J. 217, 460–465 (2013)

    Article  CAS  Google Scholar 

  • Bhattacharyya, K., Sharma, A.: Kinetics and thermodynamics of methylene blue adsorption on Neem (Azadirachta indica) leaf powder. Dyes Pigm. 65(1), 51–59 (2005)

    Article  CAS  Google Scholar 

  • Borandegi, M., Nezamzadeh-Ejhieh, A.: Enhanced removal efficiency of clinoptilolite nano-particles toward Co(II) from aqueous solution by modification with glutamic acid. Colloids Surf. A. 479, 35–45 (2015)

    Article  CAS  Google Scholar 

  • Buthiyappan, A., Aziz, A., Wan Daud, A.R.: W.M.A.: Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents. Rev. Chem. Eng. 32(1), 1–47 (2016)

    Article  CAS  Google Scholar 

  • Chowdhury, A.-N., Rahim, A., Ferdosi, Y.J., Azam, M.S., Hossain, M.M.: Cobalt–nickel mixed oxide surface: a promising adsorbent for the removal of PR dye from water. Appl. Surf. Sci. 256(12), 3718–3724 (2010)

    Article  CAS  Google Scholar 

  • Eftekhari, S., Habibi-Yangjeh, A., Sohrabnezhad, S.: Application of AlMCM-41 for competitive adsorption of methylene blue and rhodamine B: thermodynamic and kinetic studies. J. Hazard. Mater. 178(1–3), 349–355 (2010)

    Article  CAS  Google Scholar 

  • El-Sayes, M.A.: Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34, 257–264 (2001)

    Article  Google Scholar 

  • Franco, D.S.P., Piccin, J.S., Lima, E.C., Dotto, G.L.: Interpretations about methylene blue adsorption by surface modified chitin using the statistical physics treatment. Adsorption. 21(8), 557–564 (2015)

    Article  CAS  Google Scholar 

  • Gnida, A., Wiszniowski, J., Felis, E., Sikora, J., Surmacz-Górska, J., Miksch, K.: The effect of temperature on the efficiency of industrial wastewater nitrification and its (geno)toxicity. Arch. Environ. Prot. 42(1), 27–34 (2016)

    Google Scholar 

  • He, C., Hu, X.: Functionalized ordered mesoporous carbon for the adsorption of reactive dyes. Adsorption. 18(5–6), 337–348 (2012)

    Article  CAS  Google Scholar 

  • He, H.B., Li, B., Dong, J.P., Lei, Y.Y., Wang, T.L., Yu, Q.W., Feng, Y.Q., Sun, Y.B.: Mesostructured nanomagnetic polyhedral oligomeric silsesquioxanes (POSS) incorporated with dithiol organic anchors for multiple pollutants capturing in wastewater. ACS Appl. Mater. Interfaces. 5(16), 8058–8066 (2013)

    Article  CAS  Google Scholar 

  • Heidari-Chaleshtori, M., Nezamzadeh-Ejhieh, A.: Clinoptilolite nano-particles modified with aspartic acid for removal of Cu(ii) from aqueous solutions: isotherms and kinetic aspects. New J. Chem. 39(12), 9396–9406 (2015)

    Article  CAS  Google Scholar 

  • Jang, M., Chen, W., Cannon, F.S.: Preloading hydrous ferric oxide into granular activated carbon for Aarsenic removal. Environ. Sci. Technol. 42, 3369–3374 (2008)

    Article  CAS  Google Scholar 

  • Kandula, S., Jeevanandam, P.: Synthesis of silica@Ni-Co mixed metal oxide core-shell nanorattles and their potential use as effective adsorbents for waste water treatment. Eur. J. Inorg. Chem. 2015(25), 4260–4274 (2015)

    Article  CAS  Google Scholar 

  • Karimi-Shamsabadi, M., Nezamzadeh-Ejhieh, A.: Comparative study on the increased photoactivity of coupled and supported manganese-silver oxides onto a natural zeolite nano-particles. J. Mol. Catal. A. 418–419, 103–114 (2016)

    Article  Google Scholar 

  • Khosravi, I., Eftekhar, M.: Na0.5Li0.5CoO2 nanopowders: facile synthesis, characterization and their application for the removal of methylene blue dye from aqueous solution. Adv. Powder Technol. 25(6), 1721–1727 (2014)

    Article  CAS  Google Scholar 

  • Kong, D., Zheng, X., Tao, Y., Lv, W., Gao, Y., Zhi, L., Yang, Q.-H.: Porous graphene oxide-based carbon artefact with high capacity for methylene blue adsorption. Adsorption. 22(8), 1043–1050 (2016)

    Article  CAS  Google Scholar 

  • Konicki, W., Sibera, D., Mijowska, E., Lendzion-Bielun, Z., Narkiewicz, U.: Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles. J. Colloid Interface Sci. 398, 152–160 (2013)

    Article  CAS  Google Scholar 

  • Kumar, K.Y., Muralidhara, H.B., Nayaka, Y.A., Balasubramanyam, J., Hanumanthappa, H.: Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution. Powder Technol. 246, 125–136 (2013)

    Article  CAS  Google Scholar 

  • Largitte, L., Pasquier, R.: A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des. 109, 495–504 (2016)

    Article  CAS  Google Scholar 

  • Lei, C., Pi, M., Jiang, C., Cheng, B., Yu, J.: Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red. J. Colloid Interface Sci. 490, 242–251 (2017)

    Article  CAS  Google Scholar 

  • Li, F., Wu, X., Ma, S., Xu, Z., Liu, W., Liu, F.: Adsorption and desorption mechanisms of methylene blue removal with iron-oxide coated porous ceramic filter. J. Water Resour. Prot. 1, 1–57 (2009)

    Article  CAS  Google Scholar 

  • Li, L.H., Xiao, J., Liu, P., Yang, G.W.: Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal. Sci. Rep. 5, 9028 (2015)

    Article  CAS  Google Scholar 

  • Lin, K.-S., Cheng, H.-W., Chen, W.-R., Wu, C.-F.: Synthesis, characterization, and adsorption kinetics of titania nanotubes for basic dye wastewater treatment. Adsorption. 16(1–2), 47–56 (2010)

    Article  CAS  Google Scholar 

  • Lorenc-Grabowska, E., Gryglewicz, G.: Adsorption of lignite-derived humic acids on coal-based mesoporous activated carbons. J. Colloid Interface Sci. 284(2), 416–423 (2005)

    Article  CAS  Google Scholar 

  • Ma, J., Yu, F., Zhou, L., Jin, L., Yang, M., Luan, J., Tang, Y., Fan, H., Yuan, Z., Chen, J.: Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS Appl. Mater. Interfaces. 4(11), 5749–5760 (2012)

    Article  CAS  Google Scholar 

  • Ma, D., Zhu, B., Cao, B., Wang, J., Zhang, J.: Fabrication of the novel hydrogel based on waste corn stalk for removal of methylene blue dye from aqueous solution. Appl. Surf. Sci. 422, 944–952 (2017)

    Article  CAS  Google Scholar 

  • Mandal, S., Natarajan, S.: Adsorption and catalytic degradation of organic dyes in water using ZnO/ZnxFe3–xO4 mixed oxides. J. Environ. Chem. Eng. 3(2), 1185–1193 (2015)

    Article  CAS  Google Scholar 

  • Miessler, G.L., Fischer, P.J., Tarr, D.A.: Inorganic Chemistry, 5 edn. Pearson Education, Essex (2014)

    Google Scholar 

  • Muthukumaran, C., Sivakumar, V.M., Thirumarimurugan, M.: Adsorption isotherms and kinetic studies of crystal violet dye removal from aqueous solution using surfactant modified magnetic nanoadsorbent. J. Taiwan Inst. Chem. Eng. 63, 354–362 (2016)

    Article  CAS  Google Scholar 

  • Ncibi, M.C., Mahjoub, B., Seffen, M.: Kinetic and equilibrium studies of methylene blue biosorption by Posidonia oceanica (L.) fibres. J. Hazard. Mater. 139(2), 280–285 (2007)

    Article  CAS  Google Scholar 

  • Nezamzadeh-Ejhieh, A., Zabihi-Mobarakeh, H.: Heterogeneous photodecolorization of mixture of methylene blue and bromophenol blue using CuO-nano-clinoptilolite. J. Ind. Eng. Chem. 20(4), 1421–1431 (2014)

    Article  CAS  Google Scholar 

  • Rong, X., Qiu, F., Zhang, C., Fu, L., Wang, Y., Yang, D.: Adsorption–photodegradation synergetic removal of methylene blue from aqueous solution by NiO/graphene oxide nanocomposite. Powder Technol. 275, 322–328 (2015)

    Article  CAS  Google Scholar 

  • Sajjadifar, S., Abbasi, Z., Rezaee Nezhad, E., Moghaddam, M.R., Karimian, S., Miri, S.: Ni2+ supported on hydroxyapatite-core-shell γ-Fe2O3 nanoparticles: a novel, highly efficient and reusable lewis acid catalyst for the regioselective azidolysis of epoxides in water. J. Iran. Chem. Soc. 11(2), 335–340 (2013)

    Article  Google Scholar 

  • Saoiabi, S., Achelhi, K., Masse, S., Saoiabi, A., Laghzizil, A., Coradin, T.: Organo-apatites for lead removal from aqueous solutions: a comparison between carboxylic acid and aminophosphonate surface modification. Colloids Surf., A. 419, 180–185 (2013)

    Article  CAS  Google Scholar 

  • Satheesh, R., Vignesh, K., Rajarajan, M., Suganthi, A., Sreekantan, S., Kang, M., Kwak, B.S.: Removal of congo red from water using quercetin modified α-Fe2O3 nanoparticles as effective nanoadsorbent. Mater. Chem. Phys. 180, 53–65 (2016)

    Article  CAS  Google Scholar 

  • Singh, S.A., Vemparala, B., Madras, G.: Adsorption kinetics of dyes and their mixtures with Co3O4–ZrO2 composites. J. Environ. Chem. Eng. 3(4), 2684–2696 (2015)

    Article  CAS  Google Scholar 

  • Sivashankar, R., Sathya, A.B., Vasantharaj, K., Sivasubramanian, V.: Magnetic composite an environmental super adsorbent for dye sequestration—a review. Environ. Nanotechnol. Monit. Manag. 1–2, 36–49 (2014)

    Article  Google Scholar 

  • Travlou, N.A., Kyzas, G.Z., Lazaridis, N.K., Deliyanni, E.A.: Functionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent. Langmuir. 29(5), 1657–1668 (2013)

    Article  CAS  Google Scholar 

  • Wei, W., Yang, L., Zhong, W.H., Li, S.Y., Cui, J., Wei, Z.G.: Fast removal of methylene blue from aquous solution by adsorption onto poorly crystalline hydroxyapatite nanoparticles. Dig. J. Nanomater. Biostruct. 10, 1343–1363 (2015)

    Google Scholar 

  • Yan, B., Chen, Z., Cai, L., Chen, Z., Fu, J., Xu, Q.: Fabrication of polyaniline hydrogel: synthesis, characterization and adsorption of methylene blue. Appl. Surf. Sci. 356, 39–47 (2015)

    Article  CAS  Google Scholar 

  • Zhu, B., Xia, P., Ho, W., Yu, J.: Isoelectric point and adsorption activity of porous g-C3N4. Appl. Surf. Sci. 344, 188–195 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants for Development of New Faculty Staff, Ratchadaphiseksomphot Endowment Fund, Chulalongkorn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wipark Anutrasakda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 95 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phasuk, A., Srisantitham, S., Tuntulani, T. et al. Facile synthesis of magnetic hydroxyapatite-supported nickel oxide nanocomposite and its dye adsorption characteristics. Adsorption 24, 157–167 (2018). https://doi.org/10.1007/s10450-017-9931-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-017-9931-0

Keywords

Navigation