Skip to main content
Log in

Roll-up effect of sulfur dioxide adsorption on zeolites FAU 13X and LTA 5A

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The roll-up effect occurs as a result of the displacement of SO2 with H2O(g) when sulfur dioxide from humid flue gas is adsorbed by zeolites. It is mainly affected by SiO2/Al2O3 ratio (S/A) of zeolites, despite lack of detailed studies on use of hydrophilic zeolite. In this study, two zeolites of FAU 13X (S/A of 1.77) and LTA 5A (S/A of 1.51) were used to explore their roll-up effects using the breakthrough curve method. It is shown that the zeolite structure significantly influences the roll-up effect. The roll-up effect of FAU 13X is more significant than that of LTA 5A at the same water vapor content. The maximum roll-up ratio (η) for LTA 5A and FAU 13X are, respectively, 1.23 and 2.55 within the water vapor content range of 0.9–2.4%. Moreover, η of FAU 13X tends to decrease more rapidly than that of LTA 5A with increasing temperature or decreasing adsorption gas pressure. The presence of oxygen inhibits the roll-up effect and increases the breakthrough time of SO2. For the acid-modified zeolite, there is a positive correlation between η and concentration of Ca2+ or Na+ on zeolite surface, indicating obvious impact of cations on the roll-up effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Al-Harahsheh, M., Shawabkeh, R., Batiha, M., Al-Harahsheh, A., Al-Zboon, K.: Sulfur dioxide removal using natural zeolitic tuff. Fuel Process Technol. 126, 249–258 (2014)

    Article  CAS  Google Scholar 

  • Aunan, K., Pan, X.C.: Exposure-response functions for health effects of ambient air pollution applicable for China a meta-analysis. Sci. Total Environ. 329, 3–16 (2004)

    Article  CAS  Google Scholar 

  • Barros, M., Zola, A.S., Arroyo, P.A., Tavares, C.R.G., Sousa-Aguiar, E.F.: Chromium uptake from tricomponent solution in zeolite fixed bed. Adsorption 12, 239–248 (2006)

    Article  CAS  Google Scholar 

  • Bruce, K.R., Gullett, B.K., Beach, L.O.: Comparative SO2 reactivity of CaO derived from CaCO3 and Ca(OH)2. AlChE J. 35, 37–41 (1989)

    Article  CAS  Google Scholar 

  • Chang, G., Song, C., Wang, L.: A modeling and experimental study of flue gas desulfurization in a dense phase tower. J. Hazard. Mater. 189, 134–140 (2011)

    Article  CAS  Google Scholar 

  • Deng, H., Yi, H., Tang, X., Yu, Q., Ning, P., Yang, L.: Adsorption equilibrium for sulfur dioxide, nitric oxide, carbon dioxide, nitrogen on 13X and 5A zeolites. Chem. Eng. J. 188, 77–85 (2012)

    Article  CAS  Google Scholar 

  • Doǧu, G., Pekediz, A., Doǧu, T.: Dynamic analysis of viscous flow and diffusion in porous solids. AlChE J. 35, 1370–1375 (1989).

    Article  Google Scholar 

  • Dunn, J.P., Cai, Y., Liebmann, L.S., Stenger, H.G. Jr, Simpson, D.R.: A test and demonstration unit for concentrating sulfur dioxide from flue gas. Ind. Eng. Chem. Res. 35, 1409–1416 (1996)

    Article  CAS  Google Scholar 

  • Gupta, A., Gaur, V., Verma, N.: Breakthrough analysis for adsorption of sulfur-dioxide over zeolites. Chem. Eng. Process 43, 9–22 (2004)

    Article  CAS  Google Scholar 

  • Ishizuka, T., Yamamoto, T., Murayama, T., Tanaka, T., Hattori, H.: Effect of calcium sulfate addition on the activity of the absorbent for dry flue gas desulfurization. Energy Fuel 15, 438–443 (2001)

    Article  CAS  Google Scholar 

  • Izumi, J., Suzuki, M.: Oxygen selectivity on partially K exchanged Na-A type zeolite at low temperature. Adsorption 7, 27–39 (2001).

    Article  CAS  Google Scholar 

  • Li, G., Liu, C., Rao, M., Fan, Z., You, Z., Zhang, Y., Jiang, T.: Behavior of SO2 in the process of flue gas circulation sintering (FGCS) for iron ores. ISIJ Int. 54, 37–42 (2014).

    Article  CAS  Google Scholar 

  • Marcu, I.C., Sandulescu, I.: Study of sulfur dioxide adsorption on Y zeolite. J. Serb. Chem. Soc. 69, 563–570 (2004)

    Article  CAS  Google Scholar 

  • Mello, M., Eić, M.: Adsorption of sulfur dioxide from pseudo binary mixtures on hydrophobic zeolites: modeling of the breakthrough curves. Adsorption 8, 279–289 (2002).

    Article  CAS  Google Scholar 

  • Mofarahi, M., Gholipour, F.: Gas adsorption separation of CO2/CH4 system using zeolite 5A. Microporous Mesoporous Mater. 200, 1–10 (2014).

    Article  CAS  Google Scholar 

  • National Bureau of Statistics of China: China statistical yearbook–2016. China Statistics Press, Beijing (2016)

    Google Scholar 

  • Rouf, S.A., Eić, M.: Adsorption of SO2 from wet mixtures on hydrophobic zeolites. Adsorption 4, 25–33 (1998).

    Article  CAS  Google Scholar 

  • Sakizci, M., Erdoğan Alver, B., Yörükoğullari, E.: Influence of the exchangeable cations on SO2 adsorption capacities of clinoptilolite-rich natural zeolite. Adsorption 17, 739–745 (2011).

    Article  CAS  Google Scholar 

  • Sing, K.S.W: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)

    Article  CAS  Google Scholar 

  • Sotelo, J.L., Uguina, M.A., Águeda, V.I.: Fixed bed adsorption of benzothiophene over zeolites with faujasite structure. Adsorption 13, 331–339 (2007).

    Article  CAS  Google Scholar 

  • Stenger, H.G. Jr, Hu, K., Simpson, D.R.: Competitive adsorption of NO, SO2 and H2O onto mordenite synthesized from perlite. Gas Sep. Purif. 7, 19–25 (1993a).

    Article  CAS  Google Scholar 

  • Stenger, H.G. Jr, Hu, K., Simpson, D.R.: Chromatographic separation and concentration of sulfur dioxide in flue gases. Ind. Eng. Chem. Res. 32, 2736–2739 (1993b)

    Article  CAS  Google Scholar 

  • Tantet, J., Eić, M., Desai, R.: Breakthrough study of the adsorption and separation of sulfur dioxide from wet gas using hydrophobic zeolites. Gas Sep. Purif. 9, 213–220 (1995)

    Article  CAS  Google Scholar 

  • Xiong, Y., Niu, Y., Tan, H., Liu, Y., Wang, X.: Experimental study of a zero water consumption wet FGD system. Appl. Therm. Eng. 63, 272–277 (2014)

    Article  CAS  Google Scholar 

  • Yang, R.T.: Gas separation by adsorption processes. Butterworth-Heinemann, Oxford (2013)

    Google Scholar 

  • Yi, H., Deng, H., Tang, X., Yu, Q., Zhou, X., Liu, H.: Adsorption equilibrium and kinetics for SO2, NO, CO2 on zeolites FAU and LTA. J. Hazard. Mater. 203–204, 111–117 (2012)

    Article  Google Scholar 

  • Zhang, H., Rao, M., Fan, Z., Zhang, Y., Li, G., Jiang, T.: Effects of circulated flue gas components on iron ore sintering. ISIJ Int. 52, 2139–2144 (2012).

    Article  CAS  Google Scholar 

  • Zhou, X., Yi, H., Tang, X., Deng, H., Liu, H.: Thermodynamics for the adsorption of SO2, NO and CO2 from flue gas on activated carbon fiber. Chem. Eng. J. 200–202, 399–404 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks to the National Natural Science Foundation of China (Nos. 51234008 and 51174230) for financial support. This work was also financially supported by the Co-Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Wang, Q., Jiang, T. et al. Roll-up effect of sulfur dioxide adsorption on zeolites FAU 13X and LTA 5A. Adsorption 23, 699–710 (2017). https://doi.org/10.1007/s10450-017-9887-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-017-9887-0

Keywords

Navigation