Skip to main content
Log in

Adsorption rate of Reactive Black 5 on chitosan based materials: geometry and swelling effects

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The overall adsorption rate of Reactive Black 5 dye (RB5) on chitosan based materials was elucidated using diffusional models. Fundamental aspects, such as, geometry of the adsorbents and swelling effects were considered. Chitosan based materials (powder and film) were prepared from shrimp wastes and characterized regarding to the fundamental features for adsorption. Experimental decay curves were obtained under different conditions of stirring rate and initial dye concentration. The data were modeled according to the external mass transfer and diffusional models. The kL (external mass transfer coefficient), Dep (effective pore diffusion coefficient) and Ds (surface diffusion coefficient) values were estimated. For both adsorbents, it was found that the surface diffusion was the intraparticle diffusion mechanism governing the adsorption rate of RB5, since its contribution was higher than 92 % regardless the position and time. The Ds values ranged from 2.85 × 10−11 to 5.78 × 10−11 for chitosan powder and from 4.15 × 10−11 to 12.12 × 10−11 cm2 s−1 for chitosan films. The RB5 adsorption was faster when chitosan powder was used, mainly at higher stirring rates and initial dye concentrations. The swelling effect was most pronounced for the chitosan films, where, provided an increase of about 65 times in the Ds value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ARE:

Average relative error (%)

CA :

Dye concentration in bulk solution (mg L−1)

CAr :

Dye concentration within the adsorbent varying with position and t (mg L−1)

CA0 :

Initial dye concentration in bulk solution (mg L−1)

CAe :

Dye concentration in bulk solution at equilibrium (mg L−1)

CA,exp :

Experimental value of CA (mg L−1)

CA,pred :

Predicted value of CA (mg L−1)

DAB :

Molecular diffusion coefficient (cm2 s−1)

Dep :

Effective pore volume diffusion coefficient (cm2 s−1)

Ds :

Surface diffusion coefficient (cm2 s−1)

kL :

External mass transfer coefficient (cm2 s−1)

KL :

Langmuir constant (L mg−1)

m:

Mass of adsorbent (g)

MB :

Molecular weight of water (g mol−1)

NAP :

Mass flux due pore volume diffusion (mg L−1 cm s−1)

NAS :

Mass flux due surface diffusion (mg L−1 cm s−1)

qt :

Mass of dye adsorbed per gram of adsorbent (mg g−1)

q:

Mass of dye adsorbed varying with position and t (mg g−1)

qe :

Mass of dye adsorbed at equilibrium (mg g−1)

qm :

Maximum adsorption capacity from Langmuir model (mg g−1)

r:

Radial coordinate varying from 0 to R, RP (cm)

R2 :

Coefficient of determination, dimensionless

S:

External surface area per mass of adsorbent (cm2 g−1)

t:

Time (min or s)

V:

Volume of solution (L or m3)

VA :

Molar volume of solute at its normal boiling temperature (cm3 mol−1)

x:

Cartesian coordinate, cm

α:

r2 (spherical coordinates) or 1 (Cartesian coordinates)

εp :

Void fraction, dimensionless

ηB :

Viscosity of water (cp)

ρp :

Apparent density of the adsorbent (g L−1)

ρs :

Solid density of the adsorbent (g L−1)

ξ:

r (spherical coordinates) or x (Cartesian coordinates)

ϕ:

Association parameter of water, dimensionless

ϕA :

CA/CA0, dimensionless

References

  • Ali, I., Asim, M., Khan, T.A.: Low-cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manag. 113, 170–183 (2012)

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–318 (1938)

    Article  CAS  Google Scholar 

  • Chong, M.N., Tneu, Z.Y., Poh, P.E., Jin, B., Aryal, R.: Synthesis, characterisation and application of TiO2–zeolite nanocomposites for the advanced treatment of industrial dye wastewater. J. Taiwan Inst. Chem. Eng. 50, 288–296 (2015)

    Article  CAS  Google Scholar 

  • Crini, G., Badot, P.M.: Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog. Polym. Sci. 33, 399–447 (2008)

    Article  CAS  Google Scholar 

  • Demirbas, A.: Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. J. Hazard. Mater. 167, 1–9 (2009)

    Article  CAS  Google Scholar 

  • Dotto, G.L., Buriol, C., Pinto, L.A.A.: Diffusional mass transfer model for the adsorption of food dyes on chitosan films. Chem. Eng. Res. Des. 92, 2324–2332 (2014)

    Article  CAS  Google Scholar 

  • Dotto, G.L., Moura, J.M., Cadaval Jr., T.R.S., Pinto, L.A.A.: Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption. Chem. Eng. J. 214, 8–16 (2013)

    Article  CAS  Google Scholar 

  • Dotto, G.L., Pinto, L.A.A.: Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan: stirring rate effect in kinetics and mechanism. J. Hazard. Mater. 187, 164–170 (2011)

    Article  CAS  Google Scholar 

  • Dotto, G.L., Sharma, S.K., Pinto, L.A.A.: Biosorption of organic dyes: research opportunities and challenges. In: Sharma, S.K. (ed.) Green Chemistry for Dyes Removal from Waste Water: Research Trends and Applications, pp. 295–329. Scrivener Publishing LLC, Beverly (2015)

    Chapter  Google Scholar 

  • Dotto, G.L., Souza, V.C., Pinto, L.A.A.: Drying of chitosan in a spouted bed: the influences of temperature and equipment geometry in powder quality. LWT Food Sci. Technol. 44, 1786–1792 (2011)

    Article  CAS  Google Scholar 

  • Erdem, B., Erdem, M., Özcan, A.S.: Adsorption of Reactive Black 5 onto quaternized 2–dimethylaminoethyl methacrylate based polymer/clay nanocomposites. Adsorption (2016). doi:10.1007/s10450-016-9773-1

    Google Scholar 

  • Esquerdo, V.M., Cadaval Jr., T.R.S., Dotto, G.L., Pinto, L.A.A.: Chitosan scaffold as an alternative adsorbent for the removal of hazardous food dyes from aqueous solutions. J. Colloid Interface Sci. 424, 7–15 (2014)

    Article  CAS  Google Scholar 

  • Franco, D.S.P., Piccin, J.S., Lima, E.C., Dotto, G.L.: Interpretations about methylene blue adsorption by surface modified chitin using the statistical physics treatment. Adsorption 21, 557–564 (2015)

    Article  CAS  Google Scholar 

  • Furusawa, T., Smith, J.M.: Fluid-particle and intraparticle mass transport rates in slurries. Ind. Eng. Chem. Fundam. 12, 197–203 (1973)

    Article  CAS  Google Scholar 

  • Goldstein, J.I., Newbury, D.E., Echil, P., Joy, D.C., Romig Jr., A.D., Lyman, C.E., Fiori, C., Lifshin, E.: Scanning Electron Microscopy and X-ray Microanalysis. Plenum Press, New York (1992)

    Book  Google Scholar 

  • Gupta, V.K., Suhas, I.: Application of low-cost adsorbents for dye removal: a review. J. Environ. Manag. 90, 2313–2342 (2009)

    Article  CAS  Google Scholar 

  • He, X., Du, M., Li, H., Zhou, T.: Removal of direct dyes from aqueous solution by oxidized starch cross-linked chitosan/silica hybrid membrane. Int. J. Biol. Macromol. 82, 174–181 (2016)

    Article  CAS  Google Scholar 

  • Koprivanac, N., Kusic, H.: Hazardous Organic Pollutants in Colored Wastewaters. New Science Publishers, New York (2008)

    Google Scholar 

  • Kyzas, G.Z., Kostoglou, M., Lazaridis, N.K.: Relating interactions of dye molecules with chitosan to adsorption kinetic data. Langmuir 26, 9617–9626 (2010)

    Article  CAS  Google Scholar 

  • Kyzas, G.Z., Lazaridis, N.K., Kostoglou, M.: Modelling the effect of pre-swelling on adsorption dynamics of dyes by chitosan derivatives. Chem. Eng. Sci. 81, 220–230 (2012)

    Article  CAS  Google Scholar 

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  • Mehrjouei, M., Müller, S., Möller, D.: A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem. Eng. J. 263, 209–219 (2015)

    Article  CAS  Google Scholar 

  • Moura, J.M., Farias, B.S., Rodrigues, D.A.S., Moura, C.M., Dotto, G.L., Pinto, L.A.A.: Preparation of chitosan with different characteristics and its application for biofilms production. J. Polym. Environ. 23, 470–477 (2015)

    Article  CAS  Google Scholar 

  • Ocampo-Pérez, R., Leyva-Ramos, R., Alonso-Davila, P., Rivera-Utrilla, J., Sánchez-Polo, M.: Modeling adsorption rate of pyridine onto granular activated carbon. Chem. Eng. J. 165, 133–141 (2010)

    Article  Google Scholar 

  • Ocampo-Pérez, R., Leyva-Ramos, R., Mendoza-Barron, J., Guerrero-Coronado, R.M.: Adsorption rate of phenol from aqueous solution onto organobentonite: surface diffusion and kinetic models. J. Colloid Interface Sci. 364, 195–204 (2011)

    Article  Google Scholar 

  • Ocampo-Pérez, R., Leyva-Ramos, R., Rivera-Utrilla, J., Flores-Cano, J.V., Sánchez-Polo, M.: Modeling adsorption rate of tetracyclines on activated carbons from aqueous phase. Chem. Eng. Res. Des. 104, 579–588 (2015)

    Article  Google Scholar 

  • Ocampo-Pérez, R., Rivera-Utrilla, J., Gómez-Pacheco, C., Sánchez-Polo, M., López-Peñalver, J.J.: Kinetic study of tetracycline adsorption on sludge-derived adsorbents in aqueous phase. Chem. Eng. J. 213, 88–96 (2012)

    Article  Google Scholar 

  • Prausnitz, J.M., Tavares, F.W.: Thermodynamics of fluid-phase equilibria for standard chemical engineering operations. AIChE J. 50, 739–761 (2004)

    Article  CAS  Google Scholar 

  • Qiu, H., Pan, L.L., Zhang, Q.J., Zhang, W., Zhang, Q.: Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci. A10, 716–724 (2009)

    Article  Google Scholar 

  • Rêgo, T.V., Cadaval Jr, T.R.S., Dotto, G.L., Pinto, L.A.A.: Statistical optimization, interaction analysis and desorption studies for the azo dyes adsorption onto chitosan films. J. Colloid Interface Sci. 411, 27–33 (2013)

    Article  Google Scholar 

  • Ruthven, D.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

    Google Scholar 

  • Salleh, M.A.M., Mahmoud, D.K., Karim, W.A.W.A., Idris, A.: Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280, 1–13 (2011)

    Article  CAS  Google Scholar 

  • Saratale, R.G., Saratale, G.D., Chang, J.S., Govindwar, S.P.: Bacterial decolorization and degradation of azo dyes: a review. J. Taiwan Inst. Chem. Eng. 42, 138–157 (2011)

    Article  CAS  Google Scholar 

  • Silverstein, R.M., Webster, F.X., Kiemle, D.J.: Spectrometric Identification of Organic Compounds. Wiley, New York (2007)

    Google Scholar 

  • Srinivasan, A., Viraraghavan, T.: Decolorization of dye wastewaters by biosorbents: a review. J. Environ. Manag. 91, 1915–1929 (2010)

    Article  CAS  Google Scholar 

  • Su, C.X.H., Low, L.W., Teng, T.T., Wong, Y.S.: Combination and hybridisation of treatments in dye wastewater treatment: a review. J. Environ. Chem. Eng. (2016). doi:10.1016/j.jece.2016.07.026

    Google Scholar 

  • Suzuki, M.: Adsorption Engineering. Kodansha, Tokyo (1990)

    Google Scholar 

  • Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)

    Article  CAS  Google Scholar 

  • Vakili, M., Rafatullah, M., Salamatinia, M., Abdullah, A.Z., Ibrahim, M.H., Tan, K.B., Gholami, Z., Amouzgar, P.: Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr. Polym. 113, 115–130 (2014)

    Article  CAS  Google Scholar 

  • Verma, A.K., Dash, R.R., Bhunia, P.A.: A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manag. 93, 154–168 (2012)

    Article  CAS  Google Scholar 

  • Wilke, C.R., Chang, P.: Correlation of diffusion coefficients in dilute solutions. AIChE J. 1, 264–268 (1955)

    Article  CAS  Google Scholar 

  • Yagub, M.T., Sen, T.K., Afroze, S., Ang, H.M.: Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci. 209, 172–184 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CAPES (Coordination for the Improvement of Higher Education Personnel), CNPq (National Council for Scientific and Technological Development) and CEME-SUL (Federal University of Rio Grande Brazil). Dr. Raúl Ocampo Perez, acknowledges the support of the Consejo Nacional de Ciencia y Tecnología, CONACyT, Mexico, through CB-2013-01 221757.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. L. Dotto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dotto, G.L., Ocampo-Pérez, R., Moura, J.M. et al. Adsorption rate of Reactive Black 5 on chitosan based materials: geometry and swelling effects. Adsorption 22, 973–983 (2016). https://doi.org/10.1007/s10450-016-9804-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-016-9804-y

Keywords

Navigation