Skip to main content
Log in

The development of a new LDF mass transfer correlation for adsorption in fixed beds

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

In this study, a general LDF model has been introduced to predict mass transfer rate through adsorbents with the macropore diffusion as the controlling step. Using this relation eliminates the need for solving the time-consuming diffusion equation to find mass transfer rate through the porous adsorbent. The proposed relation was successfully applied in the general mathematical model for an adsorption fixed bed. This correlation was adjusted to be capable of predicting the mass transfer rate in a wide range of gas adsorption systems reported in the literature. This correlation was used in 21 different adsorbent and adsorbate systems. The results demonstrated an excellent agreement between the correlation results and those obtained using Fickian diffusion equation. By applying the developed LDF model instead of diffusion model, a great deal of CPU time can be saved. The latter characteristic will be very important when this model is employed in commercial software such as Aspen Adsorption or Prosim Dynamic Adsorption Column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

b :

Adsorption affinity parameter (kPa−1)

b ref :

Reference adsorption affinity parameter (kPa−1)

C b :

Adsorbing component concentration in the bed space (mole/m3)

C b,initial :

Initial concentration of adsorbing component in the bed space (mole/m3)

C p :

Adsorbing component concentration within the intraparticle space (mole/m3)

C in :

Inlet concentration of Adsorbing component in gas phase (mole/m3)

C ref :

Reference concentration of Adsorbing component in gas phase (mole/m3)

D ax :

Axial dispersion (m2/s)

D eff :

Effective diffusivity in particle (m2/s)

D m :

Molecular diffusivity (m2/s)

D k :

Knudsen diffusivity (m2/s)

D ref :

Reference diffusivity (m2/s)

d p :

Particle diameter (m)

K LDF :

LDF model mass transfer coefficient (s−1)

P :

Partial pressure of adsorbing component (kPa)

q c :

Equilibrium concentration of adsorbing component in skeleton of solid phase(mole/m3)

q p :

Average adsorbing component concentration in solid phase (mole/m3)

q s :

Saturation capacity of adsorbing component in solid phase (mole/m3)

\(q^{*}_{in}\) :

Equilibrium concentration of inlet adsorbing component in solid phase (mole/m3)

q * :

Equilibrium concentration of adsorbing component in solid phase (mole/m3)

r :

Radial distance in particle (m)

R p :

Particle radius (m)

t :

Time (s)

U :

Interstitial velocity (m/s)

U ref :

Reference velocity (m/s)

X :

Dimensionless group

Y :

Dimensionless group

Z :

Axial distance in bed (m)

ε b :

Bed porosity

ε p :

Pellet porosity

ρ s :

Particle skeleton density (kg/m3)

γ :

Axial dispersion correlation coefficient

τ :

Tortuosity factor

References

  • Ahn, H., Moon, J.-H., Hyun, S.-H., Lee, C.-H.: Diffusion mechanism of carbon dioxide in zeolite 4A and CaX pellets. Adsorption 10(2), 111–128 (2004)

    Article  CAS  Google Scholar 

  • Alpay, E., Scott, D.M.: The linear driving force model for fast-cycle adsorption and desorption in a spherical particle. Chem. Eng. Sci. 47(2), 499–502 (1992). doi:10.1016/0009-2509(92)80041-A

    Article  CAS  Google Scholar 

  • Botte, G., Zhang, R., Ritter, J.: New approximate model for nonlinear adsorption and concentration dependent surface diffusion in a single particle. Adsorption 5(4), 373–380 (1999). doi:10.1023/a:1008960716126

    Article  CAS  Google Scholar 

  • Carta, G.: Exact solution and linear driving force approximation for cyclic mass transfer in a bidisperse sorbent. Chem. Eng. Sci. 48(9), 1613–1618 (1993). doi:10.1016/0009-2509(93)80121-6

    Article  CAS  Google Scholar 

  • Costa, E., Calleja, G., Jimenez, A., Pau, J.: Adsorption equilibrium of ethylene, propane, propylene, carbon dioxide, and their mixtures on 13X zeolite. J. Chem. Eng. Data 36(2), 218–224 (1991). doi:10.1021/je00002a020

    Article  CAS  Google Scholar 

  • Coulson, J.M., Richardson, J.F., Backhurst, R.: Coulson & Richardson’s Chemical Engineering: Fluid Flow, Heat Transfer and Mass Transfer. Elsevier Science & Tech, San Diego (1999)

    Google Scholar 

  • Cruz, P., Magalhães, F.D., Mendes, A.: Generalized linear driving force approximation for adsorption of multicomponent mixtures. Chem. Eng. Sci. 61(11), 3519–3531 (2006). doi:10.1016/j.ces.2006.01.001

    Article  CAS  Google Scholar 

  • El-Sharkawy, I.I.: On the linear driving force approximation for adsorption cooling applications. Int. J. Refrig 34(3), 667–673 (2011). doi:10.1016/j.ijrefrig.2010.12.006

    Article  CAS  Google Scholar 

  • Farooq, S., Ruthven, D.M.: Heat effects in adsorption column dynamics. 1. Comparison of one- and two-dimensional models. Ind. Eng. Chem. Res. 29(6), 1076–1084 (1990). doi:10.1021/ie00102a019

    Article  CAS  Google Scholar 

  • Gadre, S.A., Ritter, J.A.: New analytical solution for nonlinear adsorption and diffusion in a single particle. Chem. Eng. Sci. 57(7), 1197–1204 (2002). doi:10.1016/S0009-2509(02)00008-8

    Article  CAS  Google Scholar 

  • Georgiou, A.: Asymptotically exact driving force approximation for intraparticle mass transfer rate in diffusion and adsorption processes: nonlinear isotherm systems with macropore diffusion control. Chem. Eng. Sci. 59(17), 3591–3600 (2004). doi:10.1016/j.ces.2004.01.072

    Article  CAS  Google Scholar 

  • Georgiou, A., Kupiec, K.: Nonlinear driving force approximation for intraparticle mass transfer in adsorption processes: nonlinear isotherm systems with macropore diffusion control. Chem. Eng. J. 92(1–3), 185–191 (2003). doi:10.1016/S1385-8947(02)00136-5

    Article  CAS  Google Scholar 

  • Gholami, M., Talaie, M.R.: Investigation of simplifying assumptions in mathematical modeling of natural gas dehydration using adsorption process and introduction of a new accurate LDF model. Ind. Eng. Chem. Res. 49(2), 838–846 (2009). doi:10.1021/ie901183q

    Article  Google Scholar 

  • Glueckauf, E., Coates, J.I.: Theory of chromatography. Part IV. The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation. J. Chem. Soc. 1315–1321 (1947)

  • Golubovic, M.N., Hettiarachchi, H.D.M., Worek, W.M.: Sorption properties for different types of molecular sieve and their influence on optimum dehumidification performance of desiccant wheels. Int. J. Heat Mass Transf. 49(17–18), 2802–2809 (2006). doi:10.1016/j.ijheatmasstransfer.2006.03.012

    Article  CAS  Google Scholar 

  • Gorbach, A., Stegmaier, M., Eigenberger, G.: Measurement and modeling of water vapor adsorption on zeolite 4A—equilibria and kinetics. Adsorption 10(1), 29–46 (2004)

    Article  CAS  Google Scholar 

  • GPSA: Engineering Data Book, Eleventh ed. Gas Processors Suppliers Association, Tulsa, Oklahoma (1998)

  • Grande, C.A., Gigola, C., Rodrigues, A.: Propanene-propylene binary adsorption on zeolite 4A. Adsorption 9(4), 321–329 (2003). doi:10.1023/a:1026223914143

    Article  CAS  Google Scholar 

  • Hyun, S.H., Danner, R.P.: Equilibrium adsorption of ethane, ethylene, isobutane, carbon dioxide, and their binary mixtures on 13X molecular sieves. J. Chem. Eng. Data 27(2), 196–200 (1982). doi:10.1021/je00028a029

    Article  CAS  Google Scholar 

  • Lee, J.-S., Kim, J.-H., Kim, J.-T., Suh, J.-K., Lee, J.-M., Lee, C.-H.: Adsorption equilibria of CO2 on zeolite 13X and zeolite X/activated carbon composite. J. Chem. Eng. Data 47(5), 1237–1242 (2002). doi:10.1021/je020050e

    Article  CAS  Google Scholar 

  • Liaw, C.H., Wang, J.S.P., Greenkorn, R.A., Chao, K.C.: Kinetics of fixed-bed adsorption: a new solution. AIChE J. 25(2), 376–381 (1979). doi:10.1002/aic.690250229

    Article  Google Scholar 

  • Loughlin, K.F., Hasanain, M.A., Abdul-Rehman, H.B.: Quaternary, ternary, binary, and pure component sorption on zeolites. 2. Light alkanes on Linde 5A and 13X zeolites at moderate to high pressures. Ind. Eng. Chem. Res. 29(7), 1535–1546 (1990). doi:10.1021/ie00103a064

    Article  CAS  Google Scholar 

  • Malek, A., Farooq, S.: Comparison of isotherm models for hydrocarbon adsorption on activated carbon. AIChE J. 42(11), 3191–3201 (1996). doi:10.1002/aic.690421120

    Article  CAS  Google Scholar 

  • Mohamadinejad, H.: The adsorption of CO2/H2O/N2 on 5A zeolite and silica gel in a packed column in one and two dimensional flows: a dissertation. University of Alabama in Huntsville, (1999)

  • Mulloth, L.M., Finn, J.E.: Carbon dioxide adsorption on a 5A zeolite designed for CO2 removal in spacecraft cabins In. NASA/TM-1998-208752, (1998)

  • Nakao, S.I., Suzuki, M.: Mass transfer coefficient in cyclic adsorption and desorption. J. Chem. Eng. Jpn. 16, 114–119 (1983)

    Article  CAS  Google Scholar 

  • Nam, G.-M., Jeong, B.-M., Kang, S.-H., Lee, B.-K., Choi, D.-K.: Equilibrium isotherms of CH4, C2H6, C2H4, N2, and H2 on Zeolite 5A using a static volumetric method. J. Chem. Eng. Data 50(1), 72–76 (2005). doi:10.1021/je0498309

    Article  CAS  Google Scholar 

  • Pakseresht, S., Kazemeini, M., Akbarnejad, M.M.: Equilibrium isotherms for CO, CO2, CH4 and C2H4 on the 5A molecular sieve by a simple volumetric apparatus. Sep. Purif. Technol. 28(1), 53–60 (2002). doi:10.1016/S1383-5866(02)00012-6

    Article  CAS  Google Scholar 

  • Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids. McGraw-Hill, New York (2000)

    Google Scholar 

  • Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

    Google Scholar 

  • Serbezov, A., Sotirchos, S.V.: Generalized linear driving force approximation for multicomponent pressure swing adsorption simulations. Paper presented at the AIChE Annual Meeting, Chicago (1996)

  • Serbezov, A., Sotirchos, S.V.: On the formulation of linear driving force approximations for adsorption and desorption of multicomponent gaseous mixtures in sorbent particles. Sep. Purif. Technol. 24(1–2), 343–367 (2001). doi:10.1016/S1383-5866(01)00146-0

    Article  CAS  Google Scholar 

  • Thomas, W.J., Crittenden, B.: Adsorption Technology and Design. Butterworth-Heinemann, Oxford (1998)

    Google Scholar 

  • Treybal, R.E.: Mass Transfer Operation, 3rd edn. McGraw-Hill Chemical Engineering Series, New Yok (1980)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support provided by National Iranian Gas Company (NIGC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Gholami or M. R. Talaie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, M., Talaie, M.R. & Aghamiri, S.F. The development of a new LDF mass transfer correlation for adsorption in fixed beds. Adsorption 22, 195–203 (2016). https://doi.org/10.1007/s10450-015-9730-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-015-9730-4

Keywords

Navigation