Skip to main content
Log in

Multi-component adsorptive separation: use of lumping in PSA process simulation

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Being a discrete-continuous process, approach to a cyclic steady state in computer simulation of Pressure Swing Adsorption is through iterative procedures and simulation itself is quite computation-intensive. Considering the fact that simulation based design itself is an iterative process, it is imperative that simulation be computationally very efficient and phenomenologically as close to the physics of adsorption-desorption as possible. Utility of lumping the components of a gas mixture into fewer pseudo-components was computationally examined in the simulation of a representative multi-step cycle of a pressure swing based adsorptive separation process applied to natural gas treatment. The actual feed had six components competing for adsorbent sites. Five different lumping alternatives were studied and compared with the simulation results for a full six-component simulation under identical equipment dimensions and operating conditions. Lumping could reduce the number of equations to be solved by more than half and the corresponding reduction in CPU time was about 90%. The six component mixture of Natural Gas was found to be sufficiently represented by two pseudo-components. The predicted recovery (in terms of Methane and Ethane) and quality (in terms of content of higher hydrocarbons) of the raffinate differed by not more than 0.8% and 0.02% respectively. The paper discusses possible heuristics for decision-making regarding appropriate lumping as verified by extensive simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Cross sectional area of the column, m2

b i :

Adsorption equilibrium constant for ith component on the solid surface at the operating temperature, m3/mole

C v :

Valve coefficient, dimensionless

d p :

Diameter of a spherical adsorbent particle or equivalent diameter for a non-spherical particle, m

ε :

External voidage in the bed packed with the adsorbent particles, dimensionless

Φ:

Sphericity factor of the adsorbent particle

dt :

Step size for temporal discretization, s

dz :

Step size for spatial discretization, m

L :

Height of the adsorbent layer packed inside the column, m

MW i :

Molecular weight of ith component, kg/kmole

P :

Absolute Pressure, Pa(a)

Q Feed :

Volumetric feed rate of feed Natural Gas at standard conditions, m3/hr at STP conditions

q i :

Average concentration of ith component adsorbed in the volume of adsorbent particles, moles/m3 solid

q imax :

Maximum monolayer adsorption capacity of ith component on the adsorbent surface, moles/m3 solid

R :

Ideal Gas Law constant, Pa⋅m3/mole/K

t :

Temporal coordinate, s

T :

Operating temperature, K

t cycle :

Total cycle time, s

t s :

Staggering time, s

u :

Superficial velocity of the fluid, m/s

y i :

Fluid phase mole fraction of ith component, dimensionless

z :

Spatial coordinate, m

C1 :

Methane

C1+ :

Ethane and higher alkanes

C2 :

Ethane

C2+ :

Propane and higher alkanes

C3 :

Propane

C4’s:

i-Butane + n-Butane

CSS:

Cyclic steady state

IAST:

Ideal Adsorbed Solution Theory

i-C4 :

i-Butane or Isobutane

g :

Gas phase

l :

Liquid phase

N B :

Number of Beds

n-C4 :

n-Butane or Normal Butane

N max  :

Maximum number of components in the system

N PC :

Number of pseudo-components

N r :

Number of lumping rules applied

N s :

Number of steps in the cycle

PSA:

Pressure Swing Adsorption

PVSA:

Pressure Vacuum Swing Adsorption

scf :

Supercritical fluid phase

SCMPH:

Standard cubic metres per hour

SMB:

Simulated Moving Bed

STP:

Standard Conditions of Temperature and Pressure, 105 Pa absolute and 273.15 K

TSA:

Temperature Swing Adsorption

VSA:

Vacuum Swing Adsorption

References

  • Annesini, M.A., Giona, M., Gironi, F.: Continuous model for complex mixture adsorption. Ind. Eng. Chem. Res. 33, 2764–2770 (1994)

    Article  CAS  Google Scholar 

  • Aris, A.: Reactions in continuous mixtures. AIChE J. 35, 539–548 (1989)

    Article  CAS  Google Scholar 

  • Aris, R., Gavalas, G.R.: On the theory of reactions in continuous mixtures. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 260, 351–393 (1966)

    Article  CAS  Google Scholar 

  • Brown, A.S., Milton, M.J.T., Vargha, G.M., Mounce, R., Cowper, C.J., Stokes, A.M.V., Benton, A.J., Lander, D.F., Ridge, A., Laughton, A.P.: Measurement of the hydrocarbon dew point of real and synthetic natural gas mixtures by direct and indirect methods. Energy Fuels 23, 1640–1650 (2009)

    Article  CAS  Google Scholar 

  • Calligaris, M.B., Tien, C.: Species grouping in multicomponent adsorption calculations. Can. J. Chem. Eng. 60, 772–780 (1982)

    Article  CAS  Google Scholar 

  • Ceresi, J.E., Tien, C.: Carbon adsorption of phenol from aqueous solutions in the presence of other adsorbates. Sep. Technol. 1, 273–281 (1991)

    Article  CAS  Google Scholar 

  • Chang, D., Min, J., Moon, K., Park, Y.K., Jeon, J.K., Ihm, S.K.: Robust numerical simulation of pressure swing adsorption process with strong adsorbate CO2. Chem. Eng. Sci. 59, 2715–2725 (2004)

    Article  CAS  Google Scholar 

  • Chihara, K., Suzuki, M.: Air drying by pressure swing adsorption. J. Chem. Eng. Jpn. 16, 293–299 (1983)

    Article  CAS  Google Scholar 

  • Chou, G.F., Prausnitz, J.M.: Adiabatic flash calculations for continuous or semicontinuous mixtures using an equation of state. Fluid Phase Equilib. 30, 75–82 (1986)

    Article  CAS  Google Scholar 

  • Cruz, P., Magalhães, F.D., Mendes, A.: On the optimization of cyclic adsorption separation processes. AIChE J. 51, 1377–1395 (2005)

    Article  CAS  Google Scholar 

  • Daiminger, U., Lind, W., Mitariten, M.J.: Adsorption added value. Hydrocarb. Eng. 2, 83–86 (2006)

    Google Scholar 

  • El-Hawary, M.S., Landrigan, J.K.: Optimum operation of fixed-head hydro-thermal electric power systems: Powell’s hybrid method versus Newton-Raphson method. IEEE Trans. Power Appar. Syst. 101, 547–554 (1982)

    Article  Google Scholar 

  • Glinos, K., Malone, M.F.: Minimum reflux, product distribution, and lumping rules for multicomponent distillation. Ind. Eng. Chem. Process Des. Dev. 23, 764–768 (1984)

    Article  CAS  Google Scholar 

  • Harlick, P.J.E., Tezel, H.F.: An experimental adsorbent screening study for CO2 removal from N2. Microporous Mesoporous Mater. 76, 71–79 (2004)

    Article  CAS  Google Scholar 

  • Holcombe, T.C., Sager, T.C., Volles, W.K., Zarchy, A.S.: Isomerization process. US Patent 4,929,799 (1990)

  • Jacome, P.A.D., Peixoto, F.C., Platt, G.M., Ahon, V.R.R.: A new approach to distillation of continuous mixtures: modelling and simulation. Lat. Am. Appl. Res. 35, 233–239 (2005)

    CAS  Google Scholar 

  • Jee, J.G., Kim, M.B., Lee, C.H.: Adsorption characteristics of hydrogen mixtures in a layered bed: binary, ternary, and five-component mixtures. Ind. Eng. Chem. Res. 40, 868–878 (2001)

    Article  CAS  Google Scholar 

  • Ko, D., Siriwardane, R., Biegler, L.T.: Optimization of pressure swing adsorption and fractionated vacuum pressure swing adsorption processes for CO2 capture. Ind. Eng. Chem. Res. 44, 8084–8094 (2005)

    Article  CAS  Google Scholar 

  • Lee, C.H., Yang, J., Ahn, H.: Effects of carbon-to-zeolite ratio on layered bed H2 PSA for coke oven gas. AIChE J. 45, 535–545 (1999)

    Article  CAS  Google Scholar 

  • Li, G., Xiao, P., Webley, P.A., Zhang, J., Singh, R.: Competition of CO2/H2O in adsorption based CO2 capture. Energy Procedia 1, 1123–1130 (2009)

    Article  CAS  Google Scholar 

  • Li, P., Tezel, H.F.: Equilibrium and kinetic analysis of CO2–N2 adsorption separation by concentration pulse chromatography. J. Colloid Interface Sci. 313, 12–17 (2007)

    Article  CAS  Google Scholar 

  • Liu, Y., Delgado, J., Ritter, J.A.: Comparison of finite difference techniques for simulating pressure swing adsorption. Adsorption 4, 337–344 (1998)

    Article  CAS  Google Scholar 

  • Malek, A., Farooq, S.: Kinetics of hydrocarbon adsorption on activated carbon and silica gel. AIChE J. 43, 761–776 (1997)

    Article  CAS  Google Scholar 

  • Maurer, R.T.: Methane purification by pressure swing adsorption. US Patent 5,171,333 (1992)

  • Mazzotti, M., Baciocchi, R., Storti, G., Morbidelli, M.: Vapor-phase SMB adsorptive separation of linear/nonlinear paraffins. Ind. Eng. Chem. Res. 35, 2313–2321 (1996)

    Article  CAS  Google Scholar 

  • Mehrotra, A.K., Tien, C.: Further work in species grouping in multicomponent adsorption calculation. Can. J. Chem. Eng. 62, 632–643 (1984)

    Article  CAS  Google Scholar 

  • Mello, M., Eic, M.: Adsorption of sulfur dioxide from pseudo binary mixtures on hydrophobic zeolites: modelling of the breakthrough curves. Adsorption 8, 279–289 (2002)

    Article  CAS  Google Scholar 

  • Minceva, M., Rodrigues, A.E.: Modeling and simulation of a simulated moving bed for the separation of p-xylene. Ind. Eng. Chem. Res. 41, 3454–3461 (2002)

    Article  CAS  Google Scholar 

  • Minceva, M., Rodrigues, A.E.: Understanding and revamping of industrial scale SMB units for p-xylene separation. AIChE J. 53, 138–149 (2007)

    Article  CAS  Google Scholar 

  • Minkkinen, A., Mank, L., Jullian, S.: Process for the isomerization of C5/C6 normal paraffins with recycling of normal paraffins. US Patent 5,233,120 (1993)

  • Nilchan, S., Pantelides, C.C.: On the optimization of periodic adsorption processes. Adsorption 4, 113–147 (1998)

    Article  CAS  Google Scholar 

  • Olivier, M.G., Jadot, R.: Adsorption of light hydrocarbons and carbon dioxide on silica gel. J. Chem. Eng. Data 42, 230–233 (1997)

    Article  CAS  Google Scholar 

  • Park, J.H., Kim, J.N., Cho, S.H.: Performance analysis of four-bed H2 PSA process using layered beds. AIChE J. 46, 790–802 (2000)

    Article  CAS  Google Scholar 

  • Ramaswami, S., Tien, C.: Simplification of multicomponent fixed-bed adsorption calculations by species grouping. Ind. Eng. Chem. Process Des. Dev. 25, 133–139 (1986)

    Article  CAS  Google Scholar 

  • Rege, S.U., Yang, R.T.: A novel FTIR method for studying mixed gas adsorption at low concentrations: H2O and CO2 on NaX zeolite and γ-alumina. Chem. Eng. Sci. 56, 3781–3796 (2001)

    Article  CAS  Google Scholar 

  • Rege, S.U., Yang, R.T., Qian, K., Buzanowski, M.A.: Air-prepurification by pressure swing adsorption using single/layered beds. Chem. Eng. Sci. 56, 2745–2759 (2001)

    Article  CAS  Google Scholar 

  • Reverchon, E., Lamberti, G., Subra, P.: Modelling and simulation of the supercritical adsorption of complex terpene mixtures. Chem. Eng. Sci. 53, 3537–3544 (1998)

    Article  CAS  Google Scholar 

  • Reynolds, S.P., Ebner, A.D., Ritter, J.A.: New pressure swing adsorption cycles for carbon dioxide sequestration. Adsorption 11, 531–536 (2005)

    Article  Google Scholar 

  • Ribeiro, A.M., Grande, C.A., Lopes, F.V.S., Loureiro, J.M., Rodrigues, A.E.: A parametric study of layered bed PSA for hydrogen purification. Chem. Eng. Sci. 63, 5258–5873 (2008)

    Article  CAS  Google Scholar 

  • Robben, M.A., O’Brien, D.: The case for silica. Hydrocarb. Eng. 8, 23–28 (2005)

    Google Scholar 

  • Silva, J.A.C., Rodrigues, A.E.: Separation of n/iso-paraffins mixtures by pressure swing adsorption. Sep. Purif. Technol. 13, 195–208 (1998)

    Article  CAS  Google Scholar 

  • Silva, J.A.C., Da Silva, F.A., Rodrigues, A.E.: Separation of n/iso paraffins by PSA. Sep. Purif. Technol. 20, 97–110 (2000)

    Article  CAS  Google Scholar 

  • Sircar, S.: Basic research needs for design of adsorptive gas separation processes. Ind. Eng. Chem. Res. 45, 5435–5448 (2006)

    Article  CAS  Google Scholar 

  • Sircar, S., Golden, T.C.: Purification of hydrogen by pressure swing adsorption. Sep. Sci. Technol. 35, 667–687 (2000)

    Article  CAS  Google Scholar 

  • Sircar, S., Hufton, J.R.: Why does the linear driving force model for adsorption kinetics work? Adsorption 6, 137–147 (2002)

    Article  Google Scholar 

  • Sun, L.M., Quere, P.L., Levan, M.D.: Numerical simulation of diffusion-limited PSA process models by finite difference methods. Chem. Eng. Sci. 51, 5341–5352 (1996)

    Article  CAS  Google Scholar 

  • Yang, J., Lee, C.H.: Adsorption dynamics of a layered bed PSA for H2 recovery from coke oven gas. AIChE J. 5, 1325–1334 (1998)

    Article  Google Scholar 

  • Zhang, J., Webley, P.A., Xiao, P.: Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas. Energy Convers. Manag. 49, 346–356 (2008)

    Article  CAS  Google Scholar 

  • Zhang, J., Xiao, P., Li, G., Webley, P.A.: Effect of flue gas impurities on CO2 capture performance from flue gas at coal-fired power stations by vacuum swing adsorption. Energy Procedia 1, 1115–1122 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun S. Moharir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mhaskar, P.R., Moharir, A.S. Multi-component adsorptive separation: use of lumping in PSA process simulation. Adsorption 17, 701–721 (2011). https://doi.org/10.1007/s10450-011-9355-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-011-9355-1

Keywords

Navigation