Skip to main content
Log in

Methane adsorption in PIM-1

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

We report the results of Grand Canonical Monte Carlo (GCMC) simulations of methane adsorption in a prototypical polymer of intrinsic microporosity, PIM-1. Polymer chains were represented with a united-atom model, with Lennard-Jones parameters obtained from the TraPPE potential. Additionally, partial charges were calculated from ab initio methods using Gaussian (HF/6-31G* basis set). Samples of PIM-1 were built at low density conditions, followed by a Molecular Dynamics compression protocol until densities of 1.2 g cm−3 were achieved. This protocol proved to be suitable for the realistic modeling of the amorphous structure of PIM-1. Surface areas and pore size distributions were measured and compared to available experimental data. The simulated pore size distribution present a peak at 4.3 Å, consistent with experimental results. GCMC simulations of methane adsorption were performed, and found to qualitatively reproduce the shape of the available experimental isotherm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, New York (1989)

    Google Scholar 

  • Budd, P.M., Elabas, E.S., Ghanem, B.S., Makhseed, S., McKeown, N.B., Msayib, K.J., Tattershall, C.E., Wang, D.: Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity. Adv. Mater. 16(5), 456–459 (2004)

    Article  CAS  Google Scholar 

  • Budd, P.M., McKeown, N.B., Fritsch, D.: Free volume and intrinsic microporosity in polymers. J. Mater. Chem. 15(20), 1977–1986 (2005)

    Article  CAS  Google Scholar 

  • Budd, P.M., McKeown, N.B., Fritsch, D.: Polymers of intrinsic microporosity (PIMs): high free volume polymers for membrane applications. Macromol. Symp. 15(20), 1977–1986 (2006)

    Google Scholar 

  • Budd, P.M., McKeown, N.B., Ghanem, B.S., Msayib, K.J., Fritsch, D., Starannikova, L., Belov, N., Sanfirova, O., Yampolskii, Y., Shantarovich, V.: Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1. J. Membr. Sci. 325(2), 851–860 (2008)

    Article  CAS  Google Scholar 

  • Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J. Am. Chem. Soc. 117(19), 5179–5197 (1995)

    Article  CAS  Google Scholar 

  • Côté, A.P., Benin, A.I., Ockwig, N.W., O’Keeffe, M., Matzger, A.J., Yaghi, O.M.: Porous crystalline, covalent organic frameworks. Science 310(5751), 1166–1170 (2005)

    Article  Google Scholar 

  • Duren, T., Millange, F., Ferey, G., Walton, K.S., Snurr, R.Q.: Calculating geometric surface areas as a characterization tool for metal-organic frameworks. J. Phys. Chem. C 111(42), 15,350–15,356 (2007)

    Article  Google Scholar 

  • Duren, T., Bae, Y.S., Snurr, R.Q.: Using molecular simulation to characterise metal-organic frameworks for adsorption applications. Chem. Soc. Rev. 38(5), 1237–1247 (2009)

    Article  Google Scholar 

  • Frenkel, D., Smit, B.: Understanding Molecular Simulation, 2nd edn. Academic Press, London (2002)

    Google Scholar 

  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford (2004)

    Google Scholar 

  • Gelb, L.D., Gubbins, K.E.: Correlation functions of adsorbed fluids in porous glass: a computer simulation study. Mol. Phys. 96(12), 1795–1804 (1999)

    Article  CAS  Google Scholar 

  • Ghanem, B.S., McKeown, N.B., Budd, P.M., Fritsch, D.: Polymers of intrinsic microporosity derived from bis(phenazyl) monomers. Macromolecules 41(5), 1640–1646 (2008)

    Article  CAS  Google Scholar 

  • Heuchel, M., Fritsch, D., Budd, P.M., McKeown, N.B., Hofmann, D.: Atomistic packing model and free volume distribution of a polymer with intrinsic microporosity (PIM-1). J. Membr. Sci. 318(1–2), 84–99 (2008)

    Article  CAS  Google Scholar 

  • Hölck, O.: Gas sorption and swelling in glassy polymers. PhD thesis, Berlin Institute of Technology (2008)

  • Karayiannis, N.C., Mavrantzas, V.G., Theodorou, D.N.: Detailed atomistic simulation of the segmental dynamics and barrier properties of amorphous poly(ethyleneterephthalate) and poly(ethylene isophthalate). Macromolecules 37(8), 2978–2995 (2004)

    Article  CAS  Google Scholar 

  • Larsen, G.S., Siperstein, F.R., Budd, P.M., Colina, C.M.: Gas adsorption in PIM-1: CO2 and CH4 adsorption in polymer of intrinsic microporosity 1 (PIM-1). Ind. Eng. Chem. Res. (2010) (to be submitted)

  • Lee, J.S., Wick, C.D., Stubbs, J.M., Siepmann, J.I.: Simulating the vapour-liquid equilibria of large cyclic alkanes. Mol. Phys. 103(1), 99–104 (2005)

    Article  CAS  Google Scholar 

  • Martin, M.G., Siepmann, J.I.: Novel configurational-bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. united-atom description of branched alkanes. J. Phys. Chem. B 103(21), 4508–4517 (1999). URL http://towhee.sourceforge.net

    Article  CAS  Google Scholar 

  • McKeown, N.B., Budd, P.M.: Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35(8), 675–683 (2006)

    Article  CAS  Google Scholar 

  • McKeown, N.B., Budd, P.M., Book, D.: Microporous polymers as potential hydrogen storage materials. Macromol. Rapid Commun. 28(9), 995–1002 (2007)

    Article  CAS  Google Scholar 

  • Morris, R.E., Wheatley, P.S.: Gas storage in nanoporous materials. Angew. Chem. Int. Ed. 47(27), 4966–4981 (2008)

    Article  CAS  Google Scholar 

  • Myers, A.L., Monson, P.A.: Adsorption in porous materials at high pressure: theory and experiment. Langmuir 18(26), 10,261–10,273 (2002)

    Article  CAS  Google Scholar 

  • Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995). URL lammps.sandia.gov

    Article  CAS  Google Scholar 

  • Rai, N., Siepmann, JI: Transferable potentials for phase equilibria. 9. explicit hydrogen description of benzene and five-membered and six-membered heterocyclic aromatic compounds. J. Phys. Chem. B 111(36), 10,790–10,799 (2007)

    Article  CAS  Google Scholar 

  • Staiger, C.L., Pas, S.J., Hill, A.J., Cornelius, C.J.: Gas separation, free volume distribution, and physical aging of a highly microporous spirobisindane polymer. Chem. Mater. 20(8), 2606–2608 (2008)

    Article  CAS  Google Scholar 

  • Wick, C.D., Martin, M.G., Siepmann, J.I.: Transferable potentials for phase equilibria. 4. United-atom description of linear and branched alkenes and alkylbenzenes. J. Phys. Chem. B 104(33), 8008–8016 (2000)

    Article  CAS  Google Scholar 

  • Wick, C.D., Stubbs, J.M., Rai, N., Siepmann, J.I.: Transferable potentials for phase equilibria. 7. Primary, secondary, and tertiary amines, nitroalkanes and nitrobenzene, nitriles, amides, pyridine, and pyrimidine. J. Phys. Chem. B 109(40), 18,974–18,982 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Coray M. Colina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsen, G.S., Lin, P., Siperstein, F.R. et al. Methane adsorption in PIM-1. Adsorption 17, 21–26 (2011). https://doi.org/10.1007/s10450-010-9281-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-010-9281-7

Keywords

Navigation