Skip to main content
Log in

Enhanced removal of hydrogen sulfide from a gas stream by 3-aminopropyltriethoxysilane-surface-functionalized activated carbon

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

A commercial activated carbon was functionally modified by silylation with 3-aminopropyltriethoxysilane (APTES). The silylation led to the fixation of weakly basic functional groups, –NH2, on the surface as indicated by pH titration, Boehm titration, N \(_{2^{-}}\) BET analysis and X-ray photoelectron spectroscopic (XPS) analysis. Despite reducing the specific BET area and the pore volume, silylation improved the H2S removal capacity so that APTES modified activated carbon (APTES-AC) was 3.55 times more effective than the original activated carbon. XPS results indicate that H2S removal may be associated with the amino (–NH2) group and the presence of sulfur in the four oxidation states S2−, S0, S4+ and S6+. The effects of moisture, oxygen content and temperature on the performance of APTES-AC for H2S removal were investigated. The presence of moisture in the gas stream was found to have an adverse effect on the H2S removal, whilst the presence of oxygen favored the removal of H2S by APTES-AC. The higher removal capacity of APTES-AC relative to the original activated carbon indicates that APTES-AC is a potential candidate for the removal of H2S from gas streams. The H2S removal efficiency of APTES-AC was proved be superior to that of Na2CO3-impregnated AC by the pilot-scale test of purification H2S containing industrial waste gas, yellow phosphorus off-gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adib, F., Bagreev, A., Bandosz, T.J.: Effect of surface characteristics of woodbased activated carbons on adsorption of hydrogen sulfide. J. Colloid Interface Sci. 214, 407–415 (1999)

    Article  CAS  Google Scholar 

  • Bagreev, A., Bandosz, T.J.: On the mechanism of hydrogen sulfide removal from moist air on catalytic carbonaceous adsorbents. Ind. Eng. Chem. Res. 44, 530–538 (2005)

    Article  CAS  Google Scholar 

  • Bandosz, T.J.: Effect of pore structure and surface chemistry of virgin activated carbons on removal of hydrogen sulfide. Carbon 37, 483–491 (1999)

    Article  CAS  Google Scholar 

  • Bandosz, T.J.: On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures. J. Colloid Interface Sci. 246, 1–20 (2002)

    Article  CAS  Google Scholar 

  • Brazhnyk, D.V., Zaitsev, Y.P., Bacherikova, I.V., Zazhigalov, V.A., Stoch, J., Kowal, A.: Oxidation of H2S on activated carbon KAU and influence of the surface state. Appl. Catal., B Environ. 70, 557–566 (2007)

    Article  CAS  Google Scholar 

  • Bimer, J., Satbut, P.D., Bertożecki, S., Boudou, J.P., Broniek, E., Siemieniewsk, T.: Modified active carbons from precursors enriched with nitrogen functions: sulfur removal capabilities. Fuel 77, 519–525 (1998)

    Article  CAS  Google Scholar 

  • Chingombe, P., Saha, B., Wakeman, R.J.: Surface modification and characterization of a coal-based activated carbon. Carbon 43, 3132–3143 (2005)

    Article  CAS  Google Scholar 

  • da Silva, O.G., da Fonseca, M.G., Arakaki, L.N.H.: Silylated calcium phosphates and their new behavior for copper retention from aqueous solution. Colloids Surf. A: Physicochem. Eng. Asp. 301, 376–381 (2007)

    Article  Google Scholar 

  • Feng, W., Kwon, S., Borguet, E., Vidic, R.: Adsorption of hydrogen sulfide onto activated carbon fibers: effect of pore structure and surface chemistry. Environ. Sci. Technol. 39, 9744–9749 (2005)

    Article  CAS  Google Scholar 

  • Ghosh, T.K., Tollefson, E.L.: Kinetics and reaction mechanism of hydrogen sulfide oxidation over activated carbon in the temperature range of 125–200 °C. Can. J. Chem. Eng. 64, 969–976 (1986)

    Article  CAS  Google Scholar 

  • Glass, D.C.: A review of the health effects of hydrogen sulphide exposure. Ann. Occup. Hyg. 34, 323–327 (1990)

    Article  CAS  Google Scholar 

  • Graw, M.T., McCrimmon, K.D., Deschenes, L.L.: Silylation of charcoal to increase its hydrophobicity. US Patent 5151402 (1992)

  • Huang, C.C., Chen, C.H., Chu, S.M.: Effect of moisture on H2S adsorption by copper impregnated activated carbon. J. Hazard. Mater. 136, 866–873 (2006)

    Article  CAS  Google Scholar 

  • Huang, H.Y., Yang, R.T.: Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Ind. Eng. Chem. Res. 42, 2427–2433 (2003)

    Article  CAS  Google Scholar 

  • Hudson, J.L., Johnson, E.H., Natusch, D.F.S., Solomon, R.L.: Hydrogen sulfide adsorption by manganese dioxide and activated carbon. Environ. Sci. Technol. 8, 238–243 (1974)

    Article  CAS  Google Scholar 

  • Jansen, R.J.J., van Bekkum, H.: XPS of nitrogen-containing functional groups on activated carbon. Carbon 33, 1021–1027 (1995)

    Article  CAS  Google Scholar 

  • Mandal, B.P., Bandyopadhyay, S.S.: Simultaneous absorption of carbon dioxide and hydrogen sulfide into aqueous blends of 2-amino-2-methyl-1-propanol and diethanolamine. Chem. Eng. Sci. 60, 6438–6451 (2005)

    Article  CAS  Google Scholar 

  • Mangun, C.L., Benak, K.R., Economy, J., Foster, K.L.: Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia. Carbon 39, 1809–1820 (2001)

    Article  CAS  Google Scholar 

  • Masuda, J., Fukuyama, J., Fujii, S.: Influence of concurrent substances on removal of hydrogen sulfide by activated carbon. Chemosphere 39, 1611–1616 (1999)

    Article  CAS  Google Scholar 

  • Matsuo, Y., Nishino, Y., Fukutsuka, T., Sugie, Y.: Introduction of amino groups into the interlayer space of graphite oxide using 3-aminopropylethoxysilanes. Carbon 45, 1384–1390 (2007)

    Article  CAS  Google Scholar 

  • Ning, P., Hans, J.B., Wang, X.: Removal of P4, PH3 and H2S from yellow phosphoric tail gas by catalytic oxidation process. Eng. Sci. 6, 27–35 (2005)

    Google Scholar 

  • Singh, R., Dutta, P.K.: Use of surface-modified zeolite Y for extraction of metal ions from aqueous to organic phase. Microporous Mesoporous Mater. 32, 29–35 (1999)

    Article  CAS  Google Scholar 

  • Tsai, J.H., Jeng, F.T., Chiang, H.L.: Removal of H2S from exhaust gas by use of alkaline activated carbon. Adsorption 7, 357–366 (2001)

    Article  CAS  Google Scholar 

  • Wang, Y., Yan, H., Wang, E.: The electrochemical oxidation and the quantitative determination of hydrogen sulfide on a solid polymer electrolytebased system. J. Electroanal. Chem. 497, 163–167 (2001)

    Article  Google Scholar 

  • Yan, R., Chin, T., Ng, Y.L., Duan, H., Liang, D.T., Tay, J.H.: Influence of surface properties on the mechanism of H2S removal by alkaline activated carbons. Environ. Sci. Technol. 38, 316–323 (2004)

    Article  CAS  Google Scholar 

  • Yan, R., Liang, D.T., Tsen, L., Tay, H.J.: Kinetics and mechanisms of H2S adsorption by alkaline activated carbon. Environ. Sci. Technol. 36, 4460–4466 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senlin Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, S., Mo, H., Zhang, R. et al. Enhanced removal of hydrogen sulfide from a gas stream by 3-aminopropyltriethoxysilane-surface-functionalized activated carbon. Adsorption 15, 477–488 (2009). https://doi.org/10.1007/s10450-009-9198-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-009-9198-1

Keywords

Navigation